Geometry and trigonometry 2

| 16. Voronoi diagrams of regular polygons:
(a) Sites A, B, and C are located at the vertices of an equilateral triangle,
Sketch the Voronoi diagram for these sites,
| (b) Sites A, B, C, and D are located at the vertices of a square. Sketch the
' Voronoi diagram for these sites.
(c) Give a description for the Voronoi diagram for a regular n-gon
‘ ' including the position of the edges and the number of vertices.
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Complex humbers

Leamning objectives

By the end of this chapter, you should be familiar with...

' £ xample 6.1

~ mypress each value using the imaginary unit i. ,

the properties of complex numbers ' s —_— — __
L2 P (o) V16 (b) V=18 (c) V=27 (d) V=4 -y=9

« complex number calculations |
« complex numbers as vectors in the complex plane
' o powers and roots of complex numbers

the use of complex numbers in STEM applications. Z16 =V16 -V—1 = 4i i
18

'I h I. *
;!J [} 18 =V18 -V—1 = 3V2i i
| Real numbers are those that can be represented as points on a number line, 37 =37 V=T = 3/3i )
such as integer, rational, or irrational quantities. Complex numbers cannot be .. . )
' () V=4 V=9 =Va V=1 Y9 .v=1 |

represented on a number line, but are analytic solutions to equations whose

solutions are not real numbers. As these complex numbers start with the

acceptance of the imaginary unit, it gives the mistaken notion that a solution
I may be merely a figment of mathematical imagination; however, the relevance

of non-real solutions to equations has been known by mathematicians for
‘ . e X . ; ] The first four: The next four:

centuries. The many applications in electronics and with fractal images are - m 3

more current uses you may already be familiar with. P=it.i=1-i=1i

Giveni = v—1 and i2 = —1, consider further powers of i:

. . See how multiplying by i can
f=it.2=1.i2= —1 be interpreted geometrically.

g 1= 7=it.it=1.i=—j

Imaginary numbers g iP=—1:—1=1 B=i4.j4=1.1=1
Note that every power k that is an integer multiple of 4 produces i* = 1

- . .. and the pa
For any real number g, its square 1s guaranteed to be a positive real number. b

If a is positive, a* is positive; if a is negative, a? is positive again. So, what

happens mathematically when you need a solution to x2 = — 1% Since real | Exampte 6.2
numbers will not give a solution, an imaginary number is required. This Express each in its simplest form
number is called the imaginary unit i, where i = —1, which implies that .

(a) i¥ (b) 125

{ = y=T1. Like other well-known constants, such as 7, ¢, and e, this constant i
has many applications, some of which will be presented later in this chapter.

There is a reason why we do not define i = /=1.tis the convention in mathematics (hat when
we write v9 then we mean the non-negative square root of 9, namely 3. We do not mean —3.

i does not belong Lo this category since we cannot say that i is the positive square root of — 1.
ie.i> 0. Ifwedo, then —1=i-i> 0, whichis false, and if wesay i <0, then —i = 0, and
)= —i. =i > 0. which is also false, Actually —iis also a square root of v =1 because
==

Divide 31 and 125 by 4 and look for the remainder. n
a) i3l == 13 = = -1

(b

|b) i125 — i] =i

ilZS

i

Figure 6.1 GDC screen for the
With this in mind, we can use a convention which calls 1 the principal square root of —Land solution to Exaniple 6.2

writei = v —1

;I;zlz); I;umbers aéd anot.her dimc.ension to real numbers represented by

. number line. This new dimension contains values that are not

i Ofa::i;r;??: E;I;l real numbers as well as imaginary numbers. This super- called the real part of
called the set of complex numbers. A complex number has and L-erif L};{lel io ajd

€ fOrm o .
2= . . , .
b a + bi where a is the real component and b is the imaginary bis called the imaginary
Ponent, Lofzand writténas
part of z and wrillen as
Imz.

Ifz=a+ b, thenais

= A ) e R Be very careful with the
last example.

When we isolate the factor of —1 when there are square roots in an expressiol
then we can express all negative radicands using the imaginary unit 1.

=
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The zeros ol a function
are Lthe solutions o

y = 0. Graphically, the
| zeros of a {uuction are
! the x-intercepls, where
y =0,
|‘
[
b |
| |
11.7pY
|
‘ £1(x)=x?~2x+5
e Sl ; X
-10.64 -1.64k1 9.62
Figure 6.2 GDC screen for the
solution Lo lixample 6.3

176

Complex numbers

Example 6.3

Find the zerosof y = x2 — 2x + 5

%';

Soiution

As the graph of y = x? — 2x + 5 shows, there are no real zeros.

Using the quadratic formula:

2a 2
_2*+J4-20 _2xyV-16
=>x= =
2 2
sy=2Z8 oy ag
2
Exercise 6.1
1. Express each value using the imaginary unit i.
(a) V—36 (b) V—12 (c) V—63 (d) V—8-V-18
2. Express each number as a complex number in the form a + bi
(@ 4+V/-9 (b) —3-V—4 (c) —18 +/—18
(d) 4v2 — V-8 (e) Vv—4 (f) 12 +/-12
(g) —V49 (h) 2+ V/=4li
3. Express each number in its simplest form.
(a) 17 (b) i¢ (c) i (d) i—2
4, Find the zeros of each function.
(@) y=x2+2x+ 10 (b) y=x?—4x+7
(c) y=2x>+4x+5 (d) y=x*>—2x+ 10
(€) y=x%+ 6x + 10 (f) y=x2+3x+3
5. xk — 1 = 0 has k roots. For the value of k indicated, find them by

—b+ b2 —4dac _2*xy(—-2)*—4-1-5

factorising x* — 1. Knowing that (x — 1) is a factor may be useful.
There will be an alternative strategy presented later in this chapter.

(a) k=4 (b) k=3

Operations with complex numbers

Since a complex number has the form z = a + bi that separates the real
component a from the imaginary component b, the addition and subtraction of
complex numbers is very straightforward: combine the components separately.

..IE' 6.4
"" éind each sum.
@ (1+ 3i) and (4 + i) (b) (5 — 2i) and (—8 + 5i)

(o) (2/3 — 4i) and (V3 + i)
-

Solution
1+4=5 —- 8=
(_a){_ L= b{5 8§=-3
Jiti=4 (b) —2i+ 51 =3i

The sumis 5 + 4i

(©) {2\@“'\/3:3\@
Sl —diti= -3
The sum is 3v3 — 3i

The sum is —3 + 3i

"Hll;ie prf)duct of complex numbers is nothing more than the product of two
1n?m1als, found in much the same way as the product (3x — 4y)(5x + 2y),
for instance. We can find the product (3 — 4i)(5 + 2i) in a similar way.

(B—4)(5+20)=3-5+3.2i+ (—4i) - 5 + (—4i) - (2)
=15 + 6 — 20i — 8i2

=15+ 8+ (6 — 20)i
=23 — 14i

since i? = —1

Befor ivi >

- t.e we divide complex numbers, we need a reminder on the simplification
rati ; T R .
| onal expressions containing irrational denominators.

“xatple 6.5

Press each fraction with a rational number denominator.

1+3i+4+1
5-21i+-8+51

2V3-43i+V3+1

5+41i
-3+31

3v3-3i

Figure 6.3 GDC outpul
solutions to Example 6.4

for the




Complex numbers

(b) We need the conjugate of 3 — v5 which is 3 + V5, s0

(3 + \/'§>
3+/5
_12(3+V5)  12(3 +V5)
s ST el 4

12

3 -5

7 e
3—5

=3(3+4+5)=943/5

the product of z = a + bi and its complex conjugate, z* = a — bi:

(a + bi)(a — bi)

| = a? — (bi)?
I :aZ_b2i2
| :a2+b2

Just as binomial conjugates produce rational products, the multiplication of a

complex number by its complex conjugate produces an entirely real value.

Example 6.6
Express each rational expression in the form a + bi
6 50 AE=an,
! — b)) ——— c d
|‘ @ T3 ®) =73 ©) S 7 @35
|
" Solution
6 _ 6 1—iy _6(1—1i) 6(1—1i) _ ! .
| = ®)1+i—1+i«1-J: T g LT =3 -3
I+1 .
‘ 3-3i
T2+31 . 50 50 —4 —3i\ _ 50(—4—3]) 50(—4— 3i)
o-sil  (b) = . ) = -
' —4+3i —4-+3i \—4—3i 16 + 9 25
Figure 6.4 GDC output for the T LT TR, P (R S—
| solutions to Example 6.6 (a) =2(—4-30) 8 — 61
A o9 - 9 _<z—\751>:9(2~vf51>:2_/§i
P RS SOET AW 4+5

_@-30B2) —13i _ _
9 +4 13

2~ﬁ:2—ﬁ_P—ﬁ)
3+42i 3+2 \3-2

| Consider the roots, x = 1 = 2i, of the equation y = x? — 2x + 5 in ExamPI:
which we found using the quadratic formula. They are complex conjugates ©

alt
bl

each other. We can generate the original equation from the roots. In gene

\ ;
‘

» when a quadratic polynomial in x has zeros r, and r, then

‘ ' (x — r) and (x — r,) are its factors

By considering any complex number a + bi asa + bV —1, it essentially has the
same form as the binomial 3 — V5 above. The complex conjugate of z = a +
is called z* = a — bi and serves a similar purpose to the binomials. Consider -

., when (x — r) and (x — r,) are its factors then the quadratic is

(x—r)x —r)=x*—(r+rx+ rr,

n other words, the negative of the sum of the zeros is the coefficient of x,
nd the product of the zeros is the constant term.

| example 6.7

show how the original function y = x> — 2x + 5 can be found when only its
eros, x = 1 = 2i, are known.

Soiution

A polynomial has zeros,
a polynomial equation
has roots.

Since the complex conjugates (1 -+ 2i) and (1 — 2i) have a sum of 2 and a
product of 5, the original function would be y = x2 — 2x + 5

Examiple 6.8

quadratic equation of the form ax? + bx + ¢ = 0 has one known root,
x=3—4

Ifa, b, and c are all real numbers, then what is the other root?
Solution

In Example 6.7, it was shown that the sum of the roots would be —b and the
product of the roots would be ¢. For b and ¢ to be real numbers, the other
root must be the complex conjugate of the root given.

Hence, the other root is x = 3 + 4i

Eximple 6.9

'il?d the equation with the roots given in Example 6.8

1 O, iU‘Lrign

en that 3 — 4i and 3 + 4i are the roots, their sum is 6 and their product is
We assume that a = 1, then the required equation is x 2 — 6x + 25 = 0.
ever, as there is no specific value given for a, the other coefficients are
Utiples of 4, and the general solution is ax? — 6ax + 25a = 0

Remember that the
coeflicient of the quadratic
lerm need nol be 1.

~
O



Complex numbers

1. Find the sum of each pair of complex numbers.
(a) (2 — 4i)and (-3 + 2i) (b) (—1 +iyand (3 — 2i)
(¢) 2V2 + i)and (—V2 — 2i)

Consider the complex number z = —v2 + v2i
(a) Evaluate z*
(b) Prove that z% = (—16)%, where k € 7+

(c) Hence, find z*

Given that z is a complex number such that |z + 4i| = 2|z + il

| 2. Find each product.
find the value of |z].

(a) (1 — 4i)(1 + 4i) (b) (2v3 +i)(—2v3 + 1)

(c) (3 + 4i)(3 — 4i) 2i

2—V2i

. Write the complex number z = 3 +

. in the form a + bi
3. Find the product of each given complex number and its conjugate.

(a) 4 — 3i (b) —5 + 12i (c) —4 — 2/5i . Find the values of the two real numbers x and y if

(x + yi)(4 — 7i) = 3 + 2i

| 4. Express each quotient in a + bi form.

(a) 2 (b) 1-2i () 2—4i 5, Find the complex number z and write it in the form a + bi:
‘ P 1T 21 —3+2i (@ (z+ Di=32-2 (b) 22= 3~ 4

|
|‘ 5. A quadratic function y = ax? + bx + ¢ hasreal coefficients a, b, and c. ‘

Find the function when one of the zeros is:

'| (@) 1—i (b) —7 +i (€ —2/3 +3i |
6.3 The complex plane

6. Find the quadratic function whose zeros are:

| (@) x=2+3.x=2-13 (b) x = 1+/5 Real numbers can be found on a number line, but imaginary numbers cannot.
| 2 owever, purely imaginary numbers are ordered in the same way as real

“ () x=—1+2i (d) x= % £ gl R

| |+ /5 wai) For example, with real numbers: 1 <v2 <2 <e <3<

| (e) x = 5 (f) x=—-2V3 £V31i and with imagi . . - .

| imaginary numbers: 1 <v2i <2i <ei<3i<mi

There are operations such as those in section 6.2 where we take two purely

| 7. Find the quadratic function of the form y = x? + bx + ¢ ol
[maginary numbers or two complex numbers and produce a real number.

whose zeros are: -
It : . .
fwe use a separate number line to show the imaginary component of a A

: (a) (5+2Dand (3 — 1) (b) (3 + 2i)and (—3 — 2i) .
plex number, and put it at right angles to the real number line, we have

(¢) 3+ v2i)and (-3 — v2i) _a‘?mplex plane (Figure 6.5). This is similar to the x- and y-axes we use for g
| "aphs of functions. Complex numbers of the form a + bi can be repres
- - : — ‘ ' i presented N
| 8. Letz = a + bi. Find the valuesof aand b if (2 + 3i) - 2 =7 + i ) coordinate point measuring a units along the horizontal x-axis, and b units a x

ong the vertical y-axis. This complex plane is called the Argand plane (also

9. (2 + yi)(x + i) = 1 + 3i, where x and y are real numbers. Solve for x and y. . Argand diagram)
) iagram).

| 10. Consider the complex number z = 1 + V31 Ce this plane is essentially the Cartesian plane, there are many ways we

Figure 6.5 ¢ + biinthe

r’ i : . . .
FrE : :se this repres.entatlon. The distance of a number z from the origin on complex plane
N bfgarlldl plane is known as the absolute value or modulus of the complex
R=AtueT, 12

‘ (b) Prove that z¢ = 8%" wherene€ Z*

(c) Hence, find z*

181 ‘




Complex numbers

6

Enammeﬁm b) |Z1' :m =5

L =VRTH 12 =426
0 n=2aT2
=(-3+4)+(5+i)=2+5i

Consider the complex number z; = —3 + 43
(a) Sketch it and find its distance from the origin.

(b) Compare this distance to NIRRT

|
| ( ) é’u
Solution 54 o
I . & 4
(a) The complex number z, = =3 + 4i YA ¢
is shown in the Argand diagram. & &
| Its distance from the origin is G
[ the length of the hypotenuse 2 o
of the right-angled trl'angle Fhat 75210 R T,
| could be drawn, and is 5 units long. 1
72_
(b) Asz, = —3 + 4i, its conjugate 15,
is z,* = —3 — 4i, and their 1 2 3 4 5 68
( productis 9 + 16 = 25 The real and i '
nd imaginary parts of z; are the su f - ;
, g . _ 3 ms of the real and imaginar
| In general, 2+ 2* = lz¥ . Hence, yz, - 2" = Sand is exactly parts of z; and z,. this produces a parallelogram when plotted. d <3

the same as the answer above.
Visualise the sum of two

complex numbers.

~ Also, the modulus of
2, is not the sum of the
moduli of z, and z, .

Compare 3 — diand —3 + 4i

I Given the complex numbers z; = —3 + 4iandz, =5+ i
Is one bigger than the other?

As complex numbers are
represented by points
representing two different
components, it should be easy
to see why complex numbers
are not ordered.

' (a) plot them on the complex plane

(b) find the modulus of each number (the distance from the origin)

|
Il
‘l (¢) find their sum, and call it z;

|
‘ (d) plot z; in relation to z, and z,. What do you notice?
|

Solution

| ,
N (a) vA | Excrcise 6.3

1.
E Grapl? these complex numbers in the same complex plane:
- 3+ 4i,4+ 3i, —3 + 4i, —4 + 3i,5i, —5

- (a) What is common to all of them?

b
(b) Name another complex number in quadrant 3 with the same property.

(€) Does —2y3 + V13i have the same property? Why?

-
| |‘ (d) Name both complex numbers whose imaginary part is 3V2 that fit
| the pattern.

500



Complex numbers

2, Find the modulus of each corilplex number. The 2 iﬂk; Z};z:::lzlofi:;l:eﬂ and /? j‘
@) Lo CACHE (c) 2i distance r from the origin to the 5
(d) —2i (e) —5— 12i (f) —5-+ 12i oint is its absolute value, otherwise 4!’b !
(g) —21 +20i (h) 2V3 + 4/6i known as its modulus or magnitude. 34 |
I This description is called its modulus- 2- |
| 3. Consider the two complex numbers z; = 1 + 2iand z, = 5 + i _gument or polar form. u l_i I|
[N

| (a) Plot these points on an Argand diagram.
(b) Find their moduli.
' (c) Plot the point z,, given that it is the sum of z; and z,

(d) Draw a quadrilateral by connecting the points in the order Oz,z,z,
then back to O. _

(e) What is the significance of each of the two diagonals in the

| quadrilateral drawn?

Figure 6.6 A right-angled triangle is identified

In the right-angled triangle with (position) angle 8 and hypotenuse 5
a=rcosB and b=rsinf
| 4, Use an Argand diagram to show that |z; + z,| < |2 + |2, a+bi=rcosf+rsind-i=rcos+ i sin0)
This expression is often written in shorthand as r cis 8
5. The complex numbers z;, = 2/3 — 2i,2, = 2 + 2i,and
z, = (2/3 — 2i)2 + 2i) represent the vertices of a triangle

‘ in an Argand diagram. Find its area.

Although the addition and subtraction of complex numbers is simple in
z=a-+ bi form, the polar form is often easier for multiplication and division,
when we use trigonometric identities. Consider the multiplication of two

6. Identify the set of points in the complex plane that correspond to each
| SR 002 SEEH O [PORTES HEATE GO L P complex numbers z, = a, + bjiand z, = a, + b,

equation. |
(a) || =3 (b) z* = ~z () z+ 2 =8 In polar form, they are z; = r, cis 0, and z, = r, cis 6, |

) |
(d) 1z—31=2 (e) lz— 1 +1z—31=2 Their product is i

z12, = (r, cis 8,)(r, cis 6,)
\. |
P |

Powers and roots of complex numbers§

= ry(cos 6, + isin 0;) - r,(cos 6, + isin 6,) + i2sin 0, sin 6,) ‘
=rr,(cos ) cost), +1i-cosb sinh, + i-sinfb cosb, buti? = —1,s0

21z, = 1,1,[(cos 6 cos , — sin 6, sin 6,) + i(cos O, sin 8, + sin 0, cos 6,)]

Finding the square of a complex number, such as 1 + V31, takes only a little Since cos 6, cos 6, — sin 6, sin 6, = cos (6, + 6,) and
effort, since by binomial multiplication:

|
‘ | cos 6, sin 0, + sin 6, cos 6, = sin (6, + 0,)
‘ (1 + v3i)2 = (1 + v3i)1 + V3i)

| =1+ V3i + V3i + 3i 212, = r,r)[cos (6, + 0) + isin (6, + 0,)] = r,p[cis(6, + 6,)]

| — —2 4+ 231 ;::gl)’ pu; the product of two complex numbers in polar form contains the

uct of thei |
| However, it is much more difficult to expand (1 + V3 i)6, unless we use some Geometricall s TEOduh (r,r,) and the sum of their arguments (6, -+ 6,) ‘
' ically, when z;, = r1c150 is multiplied by z,, the complex number z; |

trigonometry.

The polar form of complex numbers Exa
| “Xample 6. 12
Find the products of the complex numbers in polar form. I

(a)

IS rotateq by 6, and stretched by the scalar r,,

\ Consider the complex number z = a + bi in the Argand diagram.

| By drawing a segment from the origin to the complex number represented as
a point, a right-angled triangle is identified with an angle, its adjacent side, it

Z1=2cisgandz2=4cis%7 (b) z1=6cisgand22: IOcisg I
opposite side, and hypotenuse (Figure 6.6).




(be5) (%)

Ansra+bi

-8

Figure 6.7 GDC outpul for the
solution to Fxample 6.12 (a)

—
(s}
=
la)

Complex numbers

ﬂ |

Solution
N T . 57 i

@) z,-2, = (2 c1sg) : <4c1s—6—> |

:2-4cis<3+5—”>

6 6

= 8 cis 7 = 8(cos 7 + isin ) R |

= —8§

= L T
(b) z, - 2 <6c1s3) <1Oc1s6>

=60cis— = 60(cos— +1 sm—)
2 2 2
= 601
Now, consider the quotient of two complex numbers z, = r; cis 6, and
z, = r,Cis 0,
Their quotient is

z, ricisé,

Z rycis 6,

_ ry(cos By + isin 6,)

B r5(cos 6, + isin 6,)
Multiply both numerator and denominator by z,*

z, _ ri(cos®; +isin6;) (cos 0, — isin 0,)

z r,(cos 0, + isin 6,) (cos 6, — isin 6,)

1 (cos @, cos@, — icos O, sin @, + isin 6, cos 6, — i*sin f, sin 02)

P cos?f, — i%sin 0,

buti?= —1,

z, 1 (cosf cosB,+ sinf,sin6,) + i(sin 6, cos 6, — cos 0, sin 62).
S —_— = . =

Z, n

cos? b, + sin%0,

Since cos 6, cos 8, + sin 0, sin §, = cos (0, — 6,), and
sin 0, cos B, — cos O, sin 6, = sin (0, — 6,), while
cos? @, +sin?h, =1

4 r " r :
Z—; = r—; [cos (B, — 6,) + isin(0, — 0,)] = r—: - cis (0, — 6,)

The quotient of two complex numbers in polar form uses the quotient of
r )
their moduli r—l and the difference of their arguments (0, — 6,). Intuitivelys
2

the quotient should involve the opposite operations from the product.

| example 6.13

& . %
~ Find the quotient z-l State your answer in a + bi form.
2

1! (a) Z;

il

12 cisz—w and z, = 4cis u
S 6

Il

8cis§6£andz2 =2cis 2

{b) 2 6

| ;-: o Iuti on

. 2T

o FAST o, '

1 _ _12 .27 @ T
. — = — @3 [ L= =

(@ 7 re 4 1(3 6) 3clso = 3i
6

x 8ciss?7r 5
S= - =dcis == —2 + 2/3i

2 2Cng 3

Powers of complex numbers

Consider the square of z = a + bi = rcis 6:

{a + bi)* = (rcis 0)* = (rcis Olrcis 0) = r2cis 20

Exploring higher powers in this (ashion,

(@ + bi) = (a0 + b1 (0 + bi) = (r2cis20) - (rcis 0) = rcis 30

fo generalise, (a + bi)” = r"cis n6. This is known as de Moivre’s theorem.

| Example 6.14

For each expression, raise the complex number to the power indicated and
state the result in a + bi form.

(@) (14 /3)6

(b) (2 + 20)*

. Solution

It is helpful to show the number on an Argand diagram.

(12e5) (o)

Ansra+bi

34%7‘[

3i

Figure 6.8 GDC oulput for the

solution to Example 6.13 (a)

o

~d




(a)

3 . )
1+V3ir=vy12+V32=2and 0= arctan\/—l_— = 60 or%radlans, S0

R 6 .
1+ v3ie = (ZCng) = 26cis2m

(b)

Complex humbers

= 64(cos 27 + isin2m) = 64

YA

2+ 2ir =224 22 =2y2 and

O

¥

T )
@ = arctan1 = 45° or Zradlans, SO

24+ 2t= (2@ cis%‘-)4

. 4T
cis—

4

= 64(cos 7+ isinm) = —64

Roots of complex numbers

Now, take a close look at part (a) of Example 6.14
IF(1 + V31)6 = 64 and (2 + 20)* = —64, then V64 = 1 + V3
and V=64 = 2 + 2i

We can use de Moivre’s theorem to verify that the results are correct. Apply
de Moivres theorem, which is assumed to be true for rational numbers n = %
a5 well, to verify that V64 =1 +V3i

6 4 as a complex number is 64 + 0i which is merely a point on the x-axis.

= r=64and § = 0,50 V64 = (64 cis 0)* = 64°(cos 0 + i sin 0) = 2
ﬂ:his is disappointing. What happened to V64 = 1 + y3i?

A little bit of trigonometry will help. Recall that sin 6 and cos 0 are periodic
functions. Adding a multiple of 360° or 277 just produces another co-terminal
angle.

Thus, sin 6 = sin (6 + 2kar) and cos 6 = cos (6 + 2k7) where k € 7

98T = (64 cis0)f = (64 cis (0 + 2km)t = 643 (cos 0+ 2km | ;gin® +62k77)

= 2(cosk3—ﬂ- + isin k%) for k € {0, 1, 2, 3, 4, 5} which produces six
possibilities

= {2, 1 +V3i, =1 +V3i, =2, =1 = V3,1 — V3i}

Ve can also analyse V=64 in a similar way.

—64 as a complex number is —64 + 0i which is also a point on the x-axis in the
opposite direction, but the distance is still64 = r = 64 and 0 = =

V=64 = 64 cis 77 = (64 cis( + 2km)

= 64t (cos—” 2L i L 21T +42k77)

m 2kw | T 2’”7) for k € {0, 1, 2, 3} which

=2V f(cos L Tisi
produces

2\@({:033 - isinz), Zﬁ(cos3—ﬂ +i sin%—?),

_ 4 4 4 _
5o , . . 5-31-) ( 7m , . . 711-)
v =20 ol WK, 1Y) L8 il
' 22((:054 1sm4 y 2V2 cos4 +1sm4

= {2 + 2i, ~2 + 2i, —2 — 2i, 2 — 2i}

e Euler form of complex numibers

€Ie s yet another form that complex numbers can take: the Euler form.
¥ complex number can be expressed as z = r - e'%. Unfortunately, the
8¢ from rcis 0 to r - e/ requires some understanding of infinite series,
Yhich is not part of this course.

This topic is not
required for exams.

1t is mentioned here as an

application of what you
Jearned.

o

Visualise the roots of a
complex number.

Luler form is also known
as Exponential form.
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Complex numbers

If a complex number is in Euler form, a GDC will readily convert it into

Cartesian form. Consider the complex number z = 1 + i

A quick mental sketch should show an isosceles right-angled triangle with

l+1iL
BT
-2+23

If you wish to go from a + bi form to Euler form quickly, some GDCs allow

r=v2and 0= 77:—; hence, z = V2e7

On a GDC, enter z = v2e7, then press ENTER:

Now, consider z = ( %)

= Z\Ee% but a GDC is faster

By default, your GDC is set to accept input in
r- el form and produce results in a + bi form.

you to change the settings to make this possible.

Example 6.15

(a) Convert 1 + V3i to the forms: rcis @ and r -

(b) Use the Euler form to find (1 + v31)¢

Solution

First of all, an Argand diagram is useful.
12+ /32 =2
3
f = arctan % = 60° or g radians

1
3

.\/'2eirr/4

eiﬂ

(a) 1+\/—1—2c1s§0r26

(b) (1 + V3i)6 = (29" = 64e2m = 64

I S ——.

Consider how much easier it would be to explain the multiplication and

division of complex numbers when r and 8 are known. No trigonometric

identities are required, just basic exponent rules.

. z, = r,cis 8, = r et .
Given { L . Ik thelr product and quotient respectively ¢

z, = rycis 6, = ryel?

2,2, = (r, €)(r,ei®) = r 7, - 100 and =

=Y

h

xercise 6.4

1. Express each complex number in polar form.
(a) 3 + 3i (b) —3 + 3i
[d) =3 =31 (e) 5+ 5/3i
(g) —5 + 5/3i (h) —5/3 — 5i

in a + bi form.

. ar q
(a) z1 = 5c1s; andz, = 3 c1sg

(b) z; = 4cisZTTrand 2, = 2cis‘2T7T

u . T T

a) z, = 6¢cis—andz, = 5 —

(a) z, c152an Z 2c156
(b) z, =16 cis3—7Tand Z, = 4cis T
2 6

T Ll

¢) z,=8cis—and z, = —

(©) z, 4an Z, 2c1s2

(d) z, = 16cisgand zZ, = 2cis—3z

and state the result in g + bi form.

@ (~1+D5  (b) (=1 —p*

. Find each root.

@) V8 ®) /1 + /31

. Write each complex number in Euler form.

(@) —6 + 6i (b) 23 + 6i

( m 3
a) z, = 3ef andz, = 2e¢ 8

a + bi form.

() z = 12eTﬂ and z, = 3e8

(c) (—V3 + i)

(c) 3—3i

(f) 5/3 + 5i

. Find the products of each pair of complex numbers. State your answer

. - Z
. Find the quotient 2_1 State your answer in a + bi form.
2

. For each expression, raise the complex number to the power indicated

(c) V=16
(c) 1 —3i

» Find the product of the complex numbers in Euler form.

3m =
(b) z; = 4e™* and z, = 3e?
- Find the quotlent % " of these complex numbers and give the answer in

Im m
(b) z, = 16e 2 and z, = 2e*

(d)( \/3-16
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Complex numbers

he frequency for AC circuits is constant and is generally set at 50 Hz or 60 Hz,
.nd can be taken out of consideration. However, in circuits, both the potential
erence/current and phase do vary. Since there are then two components to
e considered, AC circuits can and are modelled well by complex numbers.

9, This chapter started with i = v'—1. This time, consider Vi
(a) How many roots should there be?

(b) Find them in a + bi form.

| (c) Are these roots the negative of the roots of V—1? Explain your OHSider the potential difference given as a sinusoidal function,

answer. 4

! a‘_lngle of % These characteristics can be illustrated by the Argand diagram shown.

_ T g
y = 10cos ((ut -y —) whose potential difference (amplitude) is 10, with a phase
i

10. Starting with the complex number z = —1 + 0i, show how Euler’s
formula ei” + 1 = 0 can be found by expressing in Euler form.

) : o . P . Figure 6.10 Polential
[n electrical notation, this is stated as V' = 10£45° where the phase angle is difference in (he complex plane

always measured in degrees. In Euler form, it is V = 10e*". As you can see
from the simple right-angled triangle diagram above, the real component is
—*ﬁ as is the imaginary component. The potential difference with phase shift is
described by the complex number 5/2 + 5v2i

6.5 Applications of complex numbers

The application of complex numbers within mathematics can be found in
topics such as differential equations and eigenvalues; however, the discussion of
these topics requires an understanding of mathematics beyond what has been
covered in the HL syllabus to this point. Complex numbers are used in fluid
dynamics, control theory, quantum mechanics, and Fourier transforms, for
example. We will look at the use of complex numbers in vectors and alternating
current (AC) electrical circuits. Vectors are covered in chapter 8. We will
consider impedance in AC circuits here.

' \ultiple sinusoidal functions

When more than one AC source is placed in a series circuit, the difference
in phase between them can be resolved by considering the complex number '
representation of each source, then added.

Example 6.16

hree AC sources are placed in series, with potential differences V|, = cos wt,

|

Consider an AC waveform, commonly known as a sinusoidal curve |
V,= 4cos<wt + %), and V; = 6(cos wt + g) l
|

!

|

(Figure 6.9). ~
|l A Find the components of the total, V = V, + V, + V,
[} 4-
3-

woition

=V=1+ (V2 +2/2i) + 6i = (1 + 2v2) + (6 + 2V2)i

In electrical notation, V, =1£0°V, = 4/45° and V, = 6£90° l

1 —27
e = |V]| =/ + 2/2)? + (6 + 2V2)? ~ 9.62 I
—4- = |
and arctan (»———6 2 2VZ> ~ 66.6° |
Figure 6.9 Sinusoidal curve 1+2/2

S V=9, ® 66.6°1
All AC waveforms have three distinguishing features. Each waveform: S LLIEE SR

O convert your answer to a + bi form, T*i/1805C

e your GDC. S_— 0.01745329251
9.622784407

| « is periodic, repeating after a cycle is completed, over a span of n degrees OF
radians. The number of cycles per second (frequency) is given in hertz (Hz):

INa + pi form, V ~ 3.83 + 8.83i i

66.55614454

» has an amplitude, which is the measure of its potential difference or current

rees 3.828427124+8.8284271251

« has a specific starting point, called the phase, typically measured in deg
relative to its basic waveform which is generally set at the origin.

(]




Physicists use j Lo
represent the imaginary
unit i lo avoid conlusing
iwith I, the current in a

I

1

|

‘ \ circui.
|
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Complex numbers

Im p e d ance — co mpl ex Val'lableS Used In e|ectr| ca' This angle measurement may not work with some calculators which expect the angle
h . ] | meastrement in radians. Here is a possible conversion:
t eory |l Store a simple conversion factor into your GDC to convert from degrees to radians.
The imaginary value was stored in C and can be reused.

Resistance (R) is a measure used in direct current (DC) circuits. In AC circuitsls
impedance (Z) is the measure of resistance that includes reactance due to
capacitance (Xc) and inductance (X;). The formula V' = IR becomes V' = [Z
with AC circuits.

mxi/180-C
0.01745329251

As a simple example, take 1 + i which has 7 = v2 and 0 = 45°, 50 z = 2’5

nx1/1809C
I

Potential difference across a resistor is noted as Vy, across a capacitor, V¢, and ‘
across an inductor, V;. Both Vand V; are considered imaginary components,
with the symbol j used to denote the imaginary unit in electrical theory.

0.01745329253,

‘/'Zeqﬁc

Potential difference across a resistor Vy is in phase with the current; however, : 1 Example 6.18
A resistor, an inductor, and a capacitor are connected in series in an AC
circuit, with potential differences across them of 8.0V, 10.5V, and 4.5V
respectively. What is the potential difference (EMF) of the source?

potential difference across a capacitor V¢ lags, and potential difference across
an inductor V; leads. Hence, impedance creates a shift measured in degrees,

X, — X,
named the phase angle, with § = arctan [—R—C Note how 8 is calculated as
]

imaginary component
arctan

just as for complex numbers in the complex
real component

plane. In electrical notation, Z represents impeda-nce, and Z = R + j(X; — X)),
Ve=28,V, =10.5and V- = 4.5
Since V=V +j(V, - Vo)

This is basically the form z = a + bi 1

Example 6.17 = 8.0 + (10.5 — 4.5)j = 8 + 6]

The magnitude of the source potential difference is |V| = V82 + 62 = 10,
that is, 10 V.

A particular AC circuit has a resistor of 6 (), a reactance across an inductor '
of 112 and a reactance across a capacitor of 3 (2.

(a) Express the impedance of the circuit as a complex number in
Cartesian form. '

| Example 6.19

TThe current in a given AC circuit is 4.1 — 5.3j A and the impedance is

6.2 + 2.3j Q2. What is the magnitude of the potential difference?

| >

(b) Express the impedance in Euler form, with 0 given in degrees, correct
to 3 significant figures. )

Solution F
Solution

() R=6,X, =11,Xc=3,50Z =6+ j(11 — 3) = 6 + 8j (this compares
toz = 6 + 8i)

Since V=17, |V) = Il - 1ZI = V412 + 532 -V6.22 + 2.32 ~ 44.3V

(b) 1Zl = /62 + 82 =10and 6 = arctan% ~ 53.1° Hence, Z = 10" |
| —~ (] / ) "
'Mpedance in parallel circuits

e VYOrk with complex numbers becomes much more useful when parallel
Ircuits are analysed. The resistance of three resistors connected in parallel is
Si‘\(enby;lz._l_+ 141

R, R, R

. So, in AC circuits, impedance is defined as




—_— e — - - < . — — ————

6 Complex numbers

Consider when there are two impedances in a parallel circuit, Z; and Z:

Z) i % VAV
L + L = i = L 2 =3 7 = 2

7 " ey A 7+ 7
of two complex numbers divided by their sum. The addition of complex
numbers is easiest in a + bi form, but their multiplication would be simpler in

which is the product i 1. A series AC circuit has a resistor of R = 12 (), a reactance across an

inductor of X; = 12 Q) and a reactance across a capacitor of X = 3 Q.

Ni—

(a) Express the impedance of the circuit as a complex number in

polar or Euler form. Cartesian form.

[megenant -

A parallel AC circuit has two loops. The first has a resistor with R, = 80 Q
and an inductor with X; = 60 Q, while the second has a resistor with
R R R, = 12 Q) and a capacitor with X, = 5Q.

(b) Express the impedance in Euler form, with given in degrees to
3 significant figures. r

2. Find the impedance of a series AC circuit with R = 4, X; = 20, and |
X = 5Q in Cartesian form. ‘

3. A resistor, an inductor, and a capacitor in a series AC circuit have '
potential differences across the of 9.0V, 15.0 V, and 3.0 V respectively. “
What is the potential difference of the source?

Find the combined impedance.

#

X X ] g .
L -‘- ‘ Solution 4. The potential differences across a resistor (V; = 6 V), an inductor III
A _ ' (V, = 11.5V), and capacitor (Vi = 3.5 V) are individually measured in
In the first loop, Z, = 80 + 60j, and in the second, Z, = 12 — 5j s]eries circuit. Find tﬁ ¢ t'Cl diff : h 1 il
Figure 6,11 Circuit diagram ) 2 : € potential difference at the source. g
for Example 6.20 2,7, )
, so we need to find their product

The combined impedance is Z = 7 <7

and their sum. Again, since the sum is much easier in a + bi form, start with
the denominator. Z; + Z, = 92 + 55j |

5. The current in a given AC circuit is 6 — 3j A and the impedance is |
8 + 4j Q. What is the magnitude of the potential difference? ||
[Remember | V| = |1l - 1Z]] | 1

Next convert Z,, Z,, and Z + Z, with your GDC into Euler form:

6. The potential difference across a given AC circuit is 100V and the
impedance is 4 — 3j Q). What is the magnitude of the current?
Change the output mode to Euler form, then enter the impedances.
o ' o ' 5 7. A parallel AC circuit has two loops. The first has a resistor with R R,
Note thé'lt the angle is in radians, but that setting is kept until the final R, = 12 Q and an inductor with X; = 5 Q, while the second has a
conversion. resistor with R, = 8 Q) and a capacitor with X, = 6 Q) Q ‘
80+60i7A . Find the combined impedance. |
10080.64350110851 X’ X(. I
1325558 I ' )
-03947911197i s ' M 5
OPTLTEY: 13e 8. In the circuit in question 7, R, = R, = 8 0, X; = 6Qand X, = 6 Q T “
107.1867529g°; 33881550164 What is ; ?
it at is the impedance? Figure 6.12 Circuil diagram
12.12836442¢70;29010951251 for question 7
|

Now, reset the mode to its default to produce an answer in a + bi form.

 Chapier 6 practice quesfions

| 12-5i+B . 1 :
130 -038079131071 L. Express each value using the imaginary unit i. l
§345815¢ o= |
107.1867529 ;32881950161 a) v—49 f—
(A¥B)/c bt
12,12836442¢ 702010851251 ) v—9.,/=1 == =y i
(A¥%B)/C (©) v=9./=1 d) v-12 - v—=27 |

11.62155105-3.4694055181

2. Express each as a complex number in the form a + bi

To 3 significant figures, this complex number is 11.6 — 3.47i (@) v-16 (b) 25 + V=25 () 5+v—25 |
Le.Z =116 — 3.47] d) -3/2 + /=18 (e) 2V3 — V=12 (f) —ViZ .
(g) —/it (h) (=3 +v=9)i
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Complex numbers

3. Express each value in simplest form.

(a) 12 (b) i» (c) i (d) i®

4. Find the zeros of each function.

I| : (a) y=x2+4x+38 (b) y =x%—6x+ 10
(c) y=x2—8x+25 (d) y=x>—4x+38
' (e) y=x%— 10x + 29 (f) y=x?+8x+32

5. Find the sums of the complex numbers.
(@) (5—1i)and(—4 + 3i) (b) (4 + 2i) and (=2 + i)
(¢) (V5 — 3i)and (2V/5 + i)

6. Find the products of the complex numbers.
(a) (6 — 4i)(6 + 4i) (b) (7 + 2i)(—7 + 2i)
' (©) (3/3 +1)(3v3 — )

7. Find the product of each complex number and its conjugate.

(a) 9 + 12i (b) 6 — 8i (c) 3 — 3v2i
8. Express each rational expression in a + bi form.
' 10 14 I = 3i
| (a) 31 (b)ff-—ﬁ (c) B0

9. A quadratic function y = ax? + bx + c has real coefficients a, b, and c.
Find the function if one of the zeros is known.

‘ (a) 1+ 2i (b) 4 + 3i (€) —3/2 +V2i

10. Find the quadratic function of the form y = x? + bx + ¢ with the given

ZEYO08.

(@) (-1 —-Dand(—1+ 1) (b) (2 + V2i) and (2 — v2i)
‘ (¢) 3+ 2i)and 4 — i)
|

|
| 11. Plot a complex number in each of the four quadrants, each with a

modulus of 10.

12. Tf 22 is the imaginary component of a complex number also with a
modulus of 10, what are the possible values of its real component?

13. On the complex plane, connect the origin O to any two points 4 + bi
and ¢ + di then construct a parallelogram with sides parallel to
those segments. What is the significance of the two diagonals of the

parallelogram?

16

14.

h '.15.

17.

19.

20.

21,

22,

Express each complex number in polar form.

(a) 2 — 2i (b) -2—-2 (c) 2+ 2i
(d) —2+2i (e) 2+ 2/3i (f) 2 — 2v3i
(g) —2+2V3i (h) —2 - 2V3i

Find the products of these complex numbers. State your answer in the
form a + bi

g T 3
(a) z, = 6913? and z, = 2c1sTﬂ- (b) z, = 8cisgandzz = ZCisg

. !
Find the quotient % of these complex numbers and give your answer in

the form a + bi

. . 3 ,
(a) z, = 9CIST and z, = 3c1s7ZT (b) z, = 10 cisSTﬂ- and z, = 2cisg

il

. T .
(€) z, = 2c1s§ and z, = 4c1s—g (d) z, = 12 cis%and zZ, = 3cis 2~

Raise the complex number to the power indicated and state the result in
the form a + bi

(a) 1 + i) (b) (1 — )¢ (c) (=1 + V34 (d) 23 + 2i)4

. Find the indicated roots.

(a) V—8 (b) V64 (€) (=3 + 331

Write each complex number in Euler form.
(@) 1 —1i (b) -2 —2i () —V3 +3i

Find the products of these complex numbers and give the answer in the
form a + bi

m Elul 2m
(@) z, = 2e% and z, = 5¢ ? (b) z, =2e3 and z, = 4e

|
6

. . Z
Find the quotients Z of these complex numbers and give the answer in
the form a + bi

3mi
(a) 2z, = 10e ? and z, = 2e

3m

B (b) zy = 12¢?and z, = 3e ¥

In a series AC circuit there is a resistor of R = 12 €, a reactance across

an inductor of X; = 3 () and a reactance across a capacitor of X = 8 Q).

(a) Express the impedance of the circuit as a complex number in the
form a + bi

(b) Express the impedance in Euler form, with 6 given in radians to
3 significant figures.

Determine the impedance in a + bi form of a series AC circuit if it
ontains a resistor, inductor, and capacitor with R =4 Q, X, = 7 Q,
and XC = 3 Q )

]
L
|
|




o

) X, TXC

Figure 6.13 Circuit diagram
for question 28
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Complex numbers

24,

25.

26.

27.

28.

29.

30.

31.

32.

A resistor, an inductor, and a capacitor in a series AC circuit have
potential differences across them of 12.0V, 4.5V, and 9.5V respectively,
What is the potential difference of the source?

The potential differences across a resistor, an inductor, and capacitor are
individually measured in a series circuit and found to be Vx = 8V,
V, = 4.5V, and V = 10.5 V. Find the potential difference at the source,

The current in a given AC circuitis I = 2 + j A. If the impedance is
X, = 4 + 2j Q, what is the magnitude of the potential difference?

The potential difference across a given AC circuit is 65V and the
impedance is 12 — 5j Q. What is the magnitude of the current?

Consider the parallel circuit shown in the diagram. A 6 () resistor and
8 Q inductor are in the first loop, and a 6 Q) resistor and a 3 {} capacitor
are in the second loop. Find their combined impedance.

Consider the complex numbers u = 2 + 3iand v = 3 + 2i

(a) Given that 1,1 E, express w in theforma + bi,a, b € R
u Ty T W P

(b) Find w* and express it in the form r - e/

(a) Find three distinct roots of the equation 82° + 27 =0,z € C
giving your answers in modulus-argument form.

(b) The roots are represented by the vertices of a triangle in an Argand

273
16

diagram. Show that the area of the triangle is

2 .. 2w
Let w = cos=Z + i sin="
et w COS7 11117

(a) Verify that w is a root of the equationz7 =1 =0,z€ C
q

(b) (i) Expand (w— 1)(1 +w+ w2+ wi+ w+w’+ wo)
(ii) Hence deduce that 1 + w + w2 + w3 + wt+ w° + w6 =0

(c) Write down the roots of the equation 27 — 1 = 0, z € C in terms of
w and plot these roots on an Argand diagram.

Consider the quadratic equation z2 + bz + ¢ = 0 where b, c € R,

z € C. The roots of this equation are & and o* where a* is the complex

conjugate of a.

(d) (i) Given that @ = w + w? + w*, show that &* = wé + w* + w?
(ii) Find the value of b and the value of c.

(e) Using the values for b and c obtained in part (d) (ii), find the
imaginary part of @, giving your answer in surd form.

One root of the equation x2 + ax + b = 0is 2 + 3iwherea, b € R
Find the value of 4 and the value of b.

%
i
\




