o

) X, TXC

Figure 6.13 Circuit diagram
for question 28

: 200

Complex numbers

24,

25.

26.

27.

28.

29.

30.

31.

32.

A resistor, an inductor, and a capacitor in a series AC circuit have
potential differences across them of 12.0V, 4.5V, and 9.5V respectively,
What is the potential difference of the source?

The potential differences across a resistor, an inductor, and capacitor are
individually measured in a series circuit and found to be Vx = 8V,
V, = 4.5V, and V = 10.5 V. Find the potential difference at the source,

The current in a given AC circuitis I = 2 + j A. If the impedance is
X, = 4 + 2j Q, what is the magnitude of the potential difference?

The potential difference across a given AC circuit is 65V and the
impedance is 12 — 5j Q. What is the magnitude of the current?

Consider the parallel circuit shown in the diagram. A 6 () resistor and
8 Q inductor are in the first loop, and a 6 Q) resistor and a 3 {} capacitor
are in the second loop. Find their combined impedance.

Consider the complex numbers u = 2 + 3iand v = 3 + 2i

(a) Given that 1,1 E, express w in theforma + bi,a, b € R
u Ty T W P

(b) Find w* and express it in the form r - e/

(a) Find three distinct roots of the equation 82° + 27 =0,z € C
giving your answers in modulus-argument form.

(b) The roots are represented by the vertices of a triangle in an Argand

273
16

diagram. Show that the area of the triangle is

2 .. 2w
Let w = cos=Z + i sin="
et w COS7 11117

(a) Verify that w is a root of the equationz7 =1 =0,z€ C
q

(b) (i) Expand (w— 1)(1 +w+ w2+ wi+ w+w’+ wo)
(ii) Hence deduce that 1 + w + w2 + w3 + wt+ w° + w6 =0

(c) Write down the roots of the equation 27 — 1 = 0, z € C in terms of
w and plot these roots on an Argand diagram.

Consider the quadratic equation z2 + bz + ¢ = 0 where b, c € R,

z € C. The roots of this equation are & and o* where a* is the complex

conjugate of a.

(d) (i) Given that @ = w + w? + w*, show that &* = wé + w* + w?
(ii) Find the value of b and the value of c.

(e) Using the values for b and c obtained in part (d) (ii), find the
imaginary part of @, giving your answer in surd form.

One root of the equation x2 + ax + b = 0is 2 + 3iwherea, b € R
Find the value of 4 and the value of b.

%
i
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Matrix algebra

Learning objectives
By the end of this chapter, you should be familiar with...

1|' | Matrix definitions and operations
ol ,

7 £ S IWW—T
| whatls @ ma ma Tl |y o W)

k

« amatrix, its order, and elements; identity and zero matrices
« the algebra of matrices: equality, addition, subtraction, and multiplicatiop

by a scalar
 multiplying matrices manually and using technology
« calculating the determinant of a2 X 2 and a 3 X 3 square matrix
« theinverse of a 2 X 2 matrix and using technology to find the inverse of ‘

A matrix is rectangular array of elements. The elements can be symbolic
expressions or numbers.

n X n matrices 1 MatriXA is denoted by

o the conditions for the existence of the inverse of a matrix Ay Gy e Ay
o the solution of systems of linear equations using inverse matrices Gy Gy wee Ay |
: ; ; A= . ¢hiTOwWS
(a maximum of three equations in three unknowns) : : : T I

« eigenvectors and eigenvalues and how to find them for 2 X 2 matrices 4., a a
ml m2 e nn

o characteristic polynomials for 2 X 2 matrices i T e 1
o diagonalising 2 X 2 matrices and applying to power-s of such matrices 71 @a s
+ geometric transformations of points in two dimensions using matrices: !
Row i of A has n elements and is (4 4 ... Gy

reflections, horizontal and vertical dilations, translations, and rotations

o applications of transformations to fractals. y;
. v . ay;
Matrices have been, and remain, significant mathematical tools. Uses of Column j of A has m elements and is
matrices span several areas, from simply solving systems of simultaneous linear
equations to describing atomic structure, designing computer game graphics, i

analysing relationships, coding, and operations research. If you have ever used
a spreadsheet program, or have created a table, then you have used a matrix.
Matrices make the presentation of data understandable and help make

calculations easy to perform. For example, your teacher’s grade book may look

The number of rows and columns of a matrix defines its size (order). So, a
atrix that has m rows and »n columns is said to have an m X 1 (m by n) order.
Amatrix A with m X n order is sometimes denoted as [A],, ., or [A],,,, to

show that A is a matrix with m rows and # columns. (Sometimes [a;] is used to

something like this:
represent a matrix.) The camera sales matrix has a 4 X 4 order, When m = #n
Student iz 1 iz 2 t1 Test2 | H k | Grad “ ' ’
udent || =ONiz Qniz e et oW VoL Lt the matrix is said to be a square matrix with order #, so the camera sales matrix
Tim 70 80 86 82 95 A i8S a square matrix of order 4
Maher 89 56 80 60 C e matmnx ot order 4.
: . i : : Every entry in a matrix is called an entry or element of the matrix and is

Table 7.1 Example of teacher's gladc book

If we want to know Tim’s grade on Test 2, we simply follow along the row T1m
to the column “Test 2’ and find that he achieved a mark of 82. Take a look at the

matrix below about the number of cameras sold at shops in four cities.

Venice Rome Budapest Prague
| Digital compact 153 98 74 56
Digital standard 211 120 57 29
DSLR 82 31 12 5
Other 308 242 183 107

Table 7.2 Number of cameras sold in four cities

If we want to know how many digital standard cameras were sold in the
Budapest shop, we follow along the row ‘Digital standard’ to the column

‘Budapest’ and find that 57 digital standard cameras were sold.

noted by a;, where i is the row number and j is the column number of that
ment. The ordered pair (i, j) is also called the address of the element. So, in
the grade book matrix example, the entry (2, 4) is 60, the student Maher’s grade
on Test 2, while (2, 4) in the camera sales matrix example is 29, the number of
dlgltal standard cameras sold in the Prague shop.

.;|.
| |
| |



A vector is a matrix that has only one row or one column, There are two types

of vector: row vectors and column vectors.
Row vector
If a matrix has one row, it is called a row vector.

B=(b, b, b,) is a row vector with dimension .

B = (1 2)could represent the position of a point in a plane and is an example

of a row vector of dimension 2.

Column vector
If a matrix has one column, it is called a column vector.
Cy

)
C=|_|isa column vector with dimension 7.

1 o .
C= again could represent the position of a point in a plane and is an

example of a column vector of dimension 2.

Vectors can be represented by row or column matrices.

Submatrix

If some row(s) and/or column(s) of a matrix A are deleted, the remaining
matrix is called a submatrix of A.

For example, if we are interested in the sales of only the three main types of
camera and only in Italian cities, we can represent them with the following

submatrix of the original matrix:
153 98 74 56

153 98
an 120 57 28
211 120
32 3l 12 5
82 3l .
; 308 242 183 107
Submatrix

Original matrix
Zero matrix
A zero matrix is one for which all entries are equal to zero, (a;

. 0 0 0 0 O 0
Some zero matrix examples: (0 0)
0 0 0 0 0 0

Diagonal matrix

In a square matrix, the entries a1, a4, -
of the matrix. Sometimes the diagonal of the matrix is also called the
or main diagonal of the matrix.

= 0 foralli amdjl?jD

., d,, are called the diagonal eleme!

What 18 the diagonal in our camera sales matrix?
Here 4u — 153, a5, = 120, a3; = 12, and a,4 = 107

Triaﬂ(-ll”"'”‘ matrix 0
120 0 0
you can use a matrix to show distances between different cities. 0 0 12 0
Graz Salzburg  Innsbruck Linz 0 0 0 107
i yienna 191 298 478 185
Graz 282 461 220
salzburg 188 135
Innsbruck 320
T;ble 7.3 Distance (in km) between Austrian cities.
. : .
The data in Table 7.3 can be represented by a triangular matrix. It is an upper 191 298 478 185
triangular matrix, in this case. 282 461 220
In a triangular matrix, the entries on one side of its diagonal are all zero. 0 188 135
A triangular matrix is a square matrix with order » for which a; =0 when i > j L 0 32
(upper triangular) or alternatively when i < j (lower triangular).
i Another way of representing the distance data is given by the following malrix.
Vienna Graz Salzburg  Innsbruck Linz
Vienna 0 191 298 478 185
Graz. 191 0 282 461 220
Salzburg 298 282 0 188 13
5
Innsbruck 478 461 188 0 320 P
Linz 185 220 135 320 0 e B e o
298 282 0 188 135

Again, the data in the (able can be represented by a matrix called a symmetric matrix.
478 461 188 0 320

In'such matrices, a;= aj; for all { and j. All symmetric matrices are square.
185 220 135 320 O

B3Ual matrices
o

z;"l_o matrices A and B are equal if the orders of A and B are the same (number
trows and columns are the same for A and B) and a; = by for all i and j.

For example, (2 %> and < ’
| 5 7 x?—4
Which can only be true if x = 3

x
7) are equalonlyifx = 3andx?2—~ 4 =75

Ing and subtracting matrices

- t;dd two matrices A and B only if they are the same size. If C is the
e two matrices, then C = A + B where ¢; = a;; + by, so we add
“Ponding terms, one by one.

€Xample

1 3 x
(5 )+( )’>:<2+x 3+y>
77 \a b 54+a 7+b




Matrix algebra

We carry out subtraction in a similar way
2 31 x y 8 2=x 33—y —7
(5 7 () (a b 2)__<5—-a 7-b —2>
The operations of addition and subtraction of matrices obey all rules of
algebraic addition and subtraction.

' golution
Aisa2 X 3matrix, Bisa3 X 4 matrix, so the product will be a 2 X 4

matrix. Every entry in the product is the result of multiplying the entries in
’the rows of A and columns of B. For example

_ ‘ ) 3 by, —2
Multiplying a matrix by a scalar cp = 20uwbp =01 an ap|b,|=3 -5 2| 8
A scalar is any object that is not a matrix. You multiply each term of the matriy ¥ b, 10

by the scalar.

=3X(=2)—5X8+2X10=—-26
A is an m X n matrix, and c is a scalar. The scalar product of c and A is another

It is often convenienl to

rewrite the scalar multiple matrix B = cA, such that every entry b; of B is a multiple of its corresponding and
¢A by factoring ¢ out of entry in A. So, for every entry in B, we have b; = ¢ X a; 3 by 1
coymyinle i | = Luby =G @ anfi| =2 1 7) 4
’ Matrix multiplication B by, E

matrix below, the scalar%

At first glance, the following definition may seem unusual. You will see later, — o SRR s R R

has been factored oul of

the matrix. however, that this definition of the product of two matrices has many practical - ‘
1 3 applications. ‘Repeat the operation for each entry in the solution matrix to get:
2 2|_ap -3 : ' —-34 —26 33 21
5001 2(5 1) : C=AB = < ‘
0 5 ) A= [a,j] isan 7 X nmatrix and B = [b[j] is an n X malrix. The product ABis an 7 X » | —52 74 33 31
natrix AB = {¢;] where : N
! e We can also use our GDC to find the product.

¢j= }Za,-kbkj =ayby+apby .+ apby
=1

Here are some examples of matrix multiplication. Multiplying a 2 X 3 matrix

by a 3 X 2 matrix results in a 2 X 2 product matrix.

4
(-1 14)
_1 =]
11 =13
2

X ! 2X12

foreachi=1,2,..,mandj=1,2,..,n
For the product of two matrices Lo be defined, the number of columns in the first matrix must be
the same as the number of rows in the second matrix.
A B = AB
Xt Xpom X
| Lol l

| al skl A

(503)
-2 1 2

2X3

When matrices are the same size, the product is the same size.

66 D=0 2

This definition means that each entry with an address i in the product AB s
obtained by multiplying the entries in the ith row of A by the corresponding
entries in the jth column of B and then adding the results: f

by 2X2 2X2 2X2
I by =L o3 3
Cl'j = ((‘H e - iy ; = 4y b'/“ + {'/'::2“1'/' A e 515 ﬂmb”j 5 0 B 7 7 7 1 0 0
10 9 16
-2 === == RS
. 3
X 4 5 5 0 0 1
7 7 7
Example 7.1 IX3 Ix3 3 X3
3 -2 1 Wh 10
= -5 2 YIEN g matri 0 I . .
Find C = ABwhen A = (2 1 7) andB=| 5 8 —4 0 ix of order 2 is multiplied by the matrix <0 1), the product is the
=9 110 5

Origj . 10
“18nal matrix, The matrix (O 1) is called the identity matrix of order 2.

[A][B]
[[-34 -26 33 21..
[-52 -74 33 31l..

Figure 7.1 Usinga GDC to find
a matrix producl

The identity matrix
of order 1 is a diagonal

matrix where a; = 1

207
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Matrix algebra

1 0 0
1 0 0
. ) . 01 00
Two further identity matricesare{0 1 0}and 5 i a0
0 0 1
0 0 1

Sometimes, the identity matrix is denoted simply by I, or by I,,, where n is
the order. So, the identity matrix with three rows and columns is I, and the
identity matrix with four rows and columns is I,.

2
LetA=(2 -1 3)andB=|5

Calculate:

(a) AB (b) BA

Solution .
(a) 2 -1 [5]=2X2+(-1)X5+3X4=11
2 2X2 2X(—=1) 2X3 A =91 vg

) |5]2 -1 3=|5%2 5X(-1) 5%x3|=[10 -5 15
4%X2 4X(-1) 4X3 8t pl2

Il

Note that the order of multiplication affects the product. Matrix multiplication,
in general, is not commutative. It is usually not true that AB = BA.

3 6 -2 3 3 6\/—2 3 -0 39
Let A = and B = >, then AB = =
5 2 1 5 5 2/\~1 5 -8 25

-2 3\/3 6 9 —6
butBA=< )( >=< >:>AB¢BA
1 5/\5 2 28 16

However, there are some special cases where matrix multiplication is
commutative. For example

3 6 2 6 3 6\/2 3 24
A=< )andBZ( ),thenABZ( )( 6>=<6 )and
5 2 5 1 5 2/\5 1 20 32

2 6\/3 6 36 24
BA=< )( ):( >:>AB=BA
5 1/\5 2 20 32

! ultipl)’ing by an identity matrix is also commutative.

abs(lOO a b ¢
d e fllo 1 o]=[d e f
g b @0 0 Y \g on o
100(abc a b c
o1 olld e fl=la e s
ool\ghzghi)

HENE

se the information given in the table to set up a matrix to find the camera
ales in each city.

Venice Rome Budapest Prague
Digital compact 153 98 74 56
Digital standard 211 120 57 29
DSLR 82 31 12 5
Other 308 242 183 107

The average selling price for each type of camera is as follows:

Digital compact €1200; Digital standard €1100; DSLR €900; Other €600

Soluiion

We set up a matrix multiplication in which the individual camera sales are
multiplied by the corresponding price. Since the rows represent the sales of
the different types of camera, create a row matrix of the different prices and
perform the multiplication.

153 98 74 56

211 120 57
- (1200 1100 900 600) i
82 31 12 5

308 242 183 107
= (674300 422700 272100 167 800)

80, the sales (in euros) from each city are:

e Venice Rome Budapest Prague
ales 674300 422 700 272100 167 800

.'__ ember that we are multiplying a 1 X 4 matrix with a 4 X 4 matrix and
Ice we geta 1 X 4 matrix.
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7 Matrix algebra

|

4. Consider the matrices

1. Consider the matrices 2 5 1 L)
o i N T A=10 =3 2 B=|3m -1 |
I B —1 3) B 4 y—2 7 0 -1 D) 3 I|
| |
1| 2 x—1 5 '
1 C (1 o —1> D=|2x 3 C 0 f |I
= = x e JR—
. 2 3 0 A I
' -1 0 2x+y x—3y 2y—x |
‘ (a) Evaluate: (a) Find A + C
(i) A+ B (i) 3A— B (i) A+ C

Frankfurt
‘ Pari-sf Stuttgarl s Munich
} Vienna

' Figure 7.2 Diagram for question 3

(b) Find x and y such that A = B

(c) Find x and y such that A + B is a diagonal matrix.
(d) Find ABand BA

(e) Find x and y such that C =D

2. Solve for the variables:

o -
o 0
S

3. The diagram shows the major highways connecting some European
cities: Vienna (V), Munich (M), Frankfurt (F), Stuttgart (S), Zurich (2),

Milan (L), and Paris (P).

The partially completed matrix below shows the number of direct routes

between these cities.

(a) Use the diagram to copy and complete the matrix.

(b) Find AB
- (c) Find BA
(d) Solve forxand yitA = C

(e) FindB + C
—1 m? 7 12
(f) Solve for mif 3B + 2| —5 2= 17 1

1 -1 2Zm+2 7

5. Find a, b, and c so that the following equation is true.

2(61—1 b>+<3 —1>:<‘5 5
c+2 3 0 5 8 ¢c+9

6. Find x and y so that the following equation is true.

(2 —3)(96—11 1—x 1 0
=5 7 =5 x+2y)_(() 1)

7. Find m and n so that the following equation is true.

<m2—1 m+2)_<3 n-i—l)
5 =7 5 n—>5

':‘. :
T?ere are two shops in your area. Your shopping list consists of 2 kg
' ?h tomatoes, 500 g of meat, and 3 litres of milk. Prices differ between
e different shops, and it is difficult to switch between shops to make

v M F S Z L P
o 1 0 0 1 2 0

\%
| M JGEl'tain you are paying the least amount of money. A better strategy is to 1
| I; - ;‘\:Ti‘:l:;re you pay I.CSS on average. The prices of the different items are
5 5 e table. Which shop should you go to?
; i SR:UCt Price in shop A Price in shop B
[ =2matoes €1.66/kg €1.58/kg
(b) Multiply the matrix from part (a) by itself and interpret what it : L{Y[t_‘,at €2.55/100g €2.6/100g
| signifies. LMilk €0.90/litre €0.95/litre
|
|

210




Matrix algebra

9. Consider the matrices = Solve for x such that AB = BA when

2 0 3 -1 -3 5 1 2 3 -8 x+3 12
N |
Eo iy 1 4 2 7 A=|x 2 —3landB=|23 x—6 -—18
10 4 2 -2 8 |

(a) FindA + (B+ C)and(A + B) + C

(b) Make a conjecture about the addition of 2 X 2 matrices observed in

[ d h that AB = BA
part (a) and prove it. 16. Solve for x and y such that A when

(c) Find A(BC) and (AB)C 'y 2 y+2 g AL g 12
| . = - = B —
(d) Make a conjecture about the multiplication of 2 X 2 matrices A=|x 2 3 |and B 23 x—6 18 |
observed in part (c) and prove it. 1 y—1 4 2 3 8 |

' 10. A company sells air conditioning units, electric heaters and humidifiers,

] Row matrix A represents the number of units sold of each appliance last
year, and matrix B represents the profit margin for each unit. Find AB

‘ and describe what this product represents.

7_2‘ Applications to systems

| €120 There is a wide range of applications of matrices in solving systems of equations. ‘I
A=(235 562 117) B =| €95 I
'I €56 Recall from algebra that the equation of a straight line can take the form
. it
. ax + by = c where a, b, and ¢ are constants, and x and y are variables.
] 11. Find r and s such that rA + B = A is true, where ' ‘ iy .
We say this is a linear equation in two variables. Similarly, the equation of a
| 2 3 + 124 = =18 A ) . .
A= ( ) B= plane in three-dimensional space has the form :
] 5 7 s—8 —42 . |
' ~ ax + by + cz = d where g, b, ¢, and d are constants, and x, y,and z are |
b variables. I
12. Let A = ( > .
| 0 1 We say that this is a linear equation in three variables.
(a) Find: -
A ASOI t . . . . . . . |
0 A2 (if) A7 (i) A (iv) A" Solution of a linear equation in # variables (1{1 th.1s case 2. or ?)) is z?n ordered |
i set of real numbers (x,, ¥, 2,) s0 that the equation in question is satisfied when :
| 3 3 these values are substituted for the corresponding variables. For example, the |
Let B = (O 3) fquation x + 2y = 4 is satisfied when x = 2 and y = 1 |
I
'I (b) Find: Some other solutions are: x = —4 and y=4 :
(i) B? (i) B (iii) B* (iv) B" x=0 andy=2

x=—2andy=3

13. Solve for x and y such that AB = BA when et of all solutions of a linear equation s its solution set, and when this
b1 g 1~ : ound, the equation is said to have been solved. To describe the entire
A= ( ) and B = < ) ition set we often use a parametric representation, as illustrated in the .
4 1 y 3 .1-:'\.\ eXampIeS'

14. Solve for x and y such that AB = BA when ‘3

' | el
A=< 3 x>andB=( )
I3 2 el y 1
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i Exostio 7.4 ~ystems of linear equations

Solve the linear equation x + 2y = 4 ? ) . j
eq y A system of k equations in » variables is a set of k linear equations in the same

, variables. For example

2+ 3y=3
x—y=4

Solution

To find the solution set of an equation in two variables, we solve for one

variable in terms of the other. For instance, if we solve for x, we obtain s a system of two linear equations in two variables, while

x=4—=2y B x— 2yt 3z=9
In this form, y is free, as it can take on any real value, while x is not free, x—3y=4
since its value depends on that of y. To represent this solution set in genera]
terms, we introduce a third variable, for example t, called a parameter, and

by letting y = t we represent the solution set as

is a system with two equations and three variables, and

s Dt 87 =29
x—3y=4

=4 -2,y =ttis: 1 b
x=4 y = t, tis any real number 2x— 5y + 52=17
Particular solutions can then be obtained by assigning values to the
parameter t. For instance, t = 1 yields the solution x = 2 andy = 1,

and ¢ = 3 yields the solutionx = —2and y = 3

is a system with three equations and three variables.

A solution of a system of equations is an ordered set of numbers x, y,, ...
‘which satisfy every equation in the system. For example (3, —1) is a solution of
Note that the solution set of a linear equation can be represented parametrically

. : . ; . + =
in several ways. For instance, in Example 7.4, if we solve for y in terms of x, the T 9y =8
parametric representation would take the form: x—y=4
Both equations in the system are satisfied when x = 3 and y = —1 are

1 .
x=m,y =2 — —m, mis areal number s . ] .
Y 2 substituted into the equations. However, (0, 1) is not a solution of the system;

Also, by chodsing m = 2, one particular solution is (x,) = (2, 1), and when it satisfies the first equation, but it does not satisfy the second.

m = _2, th i i i _2) : 5 i 1 1
another particular solution is (=2, 3) In this chapter, we will use matrix methods to solve systems of equations.

Taking our example above, we can write the system of equations in matrix form:

e =l k)=

The representation of the system of equations this way enables us to use matrix
Operations in solving systems of equations. This matrix equation can be written as

i 0= () ax-e

ber.e A is the coefficient matrix, X is the variable matrix, and C is the constant
?atrlx- However, to solve this equation, the inverse of a matrix has to be defined
Sthe solution of the system in the form

X = A-l C
Where 4-1

Example 7.5

Solve the linear equation 3x + 2y —z = 3

Seluticn

Choosing x and y as the free variables, we solve for z.
z=3x+2y—3

Letting x = p and y = ¢, we obtain the parametric representation:
x=p,y=gq,z=3p+ 2q — 3, where p and g are any real numbers II

A particular solution is (x, y, z) = (1, 1, 2) :

Parametric representation is very important when we study vectors and lines: is the inverse of the matrix A.

later on in the book.

|
LB

L
|
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A square matrix Bis the
inverse of a square matrix A
AifAB = BA = I'where e
['is the identily malrig.
Note that only square
malrices can have
multiplicative inverses.
(AT
JEEN?
[AJL[A]
([l 0]
(0 11]

Ligure 7.3 GDC screen for the
solution Lo Lxample 7.6
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'To solve the equation 2x = 6 for x, we need to multiply both sides of the
equation by %z

] ]
lax=Lxe=x=3
2~ *T 3 * 2

% is the multiplicative inverse of 2. The inverse of a matrix is defined in a

similar manner and plays a similar role in solving a matrix equation, such as

AX=C

The notation A~ is used to denote the inverse of a matrix A. Thus, B = A-1

Example 7.6

7
Are the matrices A = (4

~35 + 35) B (1 0)
—20+21/ \0 1

15—15)_(1 0)
—20+21/ \0 1

Solution
7 5 3 =5 21 — 20
as=( 0 )
4 3/\—4 7 12—12

3 —=5\(7 5 21 =20
B
—4 7/\4 3 —28 + 28

So A and B are multiplicative inverses.

We can also find the inverse using a GDC.

We will now find the general form for the inverse of a matrix.

e

f
LetA = (a and then solve the following

C

b
) and assume A7! =
d g

matrix equation for e, f, g, and h in terms of a, b, ¢, and d.
a b\fle f 10 ae + bg af + bh 1 0
(c d)(g h):<0 1>:><ce+dg cf + dh)z(o 1)
Now we can set up two systems to solve for the required variables:
ae + bg af + bh 1 0
(ce +dg of+ dh) B (0 1)

ae + bg = 1} dae + dbg = d} d —c

ce +dg=0 bee + bdg =0 T ad—bc8 T wd—be
af + bh =0 daf + dbh =0 __ b . _a
of +dh =1 :>bcf+ bdh = b /= ad —bc’  ad—bc

This is so, becauseé X2=2X 1 1

25 3 =5 o s
) and B = ( > multiplicative inverses?
3 —4 7

f —b

) [namattix A = (ﬂ b), il ad — be = 0, then ils inverse A ™! = ad —bc  ad — bc
¢ d N )
e ad — bc  ad — b
oAl == DC( . “)
gxample 7.7
y ; 4 7
ind the inverse of A = (3 5)
. (A]
don —
€_rea:4,b=7,c=3,andd:5,soad—bc:_1 A 13 51,
| [[-5 71
[3 -4]]

L 1 d —b 1 5 =7 =15 7
b -t 130 -0
T ad — bc\ —¢ a ~1\—-3 4 3=y

he number ad — bc is called the determinant of the 2 X 2 matrix

a- (1Y)

The notation we will use for this number is det A or |A|, so we write this as: j

Figure 7.4 GDC screen for the

| solution to l'xample 7.7

When the determinant is
zero (ad — be = 0),

the matrix does not have
The determinant plays an important role in determining whether or not a 55 (111(16“51:16(:;;’II\A‘L“:llllllll)\(/tliIS:.t
matrix has an inverse. is called a singular
matrix; a malrix that
does have an inverse is
called a non-singular
malrix,

detA = |A| =ad — bc

[dmmle 7.8

Solve the system of equations using matrices.

2x+3y=3
X—y=4
SOiLE on

In matr:
i matrix form, the system can be written as

b 0)-C

1 —1) Vs 3 (4)

Vrite the equation in theform X =A"!1C
("\ 2 3\7'/3

y) <1 —1) (4)

217




[A]L[C]

(131
[-111]

Figure 7.5 GDC screen for the

solution to Example 7.8

[A]
[

det([A])

[5 1
[2 -3
[7 2

-4]
-5]
-61]

17

[ Figure 7.6 Method 1

Matrix algebra

This is done by copying the first two columns and adding them to the end of
the matrix, multiplying down the main diagonals and adding the products,
and then multiplying up the second diagonals and subtracting them from the
previous product as shown. For example:

Find A, then substitute into the equation and simplity
Wi S W
= = ——
! 5\-1 2/\
=35
= = — — =
¥ 5 5 —1

In general, a system of equations can be written in matrix form as AX = B

+ o+ o+
5 1 745¢1
2\—355'\‘}\—3
7 2 6 ™7 2

= 5e(=3=6)F Veil=5)+ T+ [—4)»2 < 2~ F{—3)(—l)

) 5«5 ["'.l‘i

=90 —35—16 — 84 + 50+ 12 =152 —-135=17

There is a solution to the system when A is non-singular, whichisX=A"'B

If B = 0, the system is homogeneous. A homogeneous system will always have
a solution, called the trivial solution, X = 0 when A is non-singular. When A is
singular then the system has an infinite number of solutions.

We use a similar procedure to solve systems of equations in three variables.
However, we will use a GDC to find the inverse of a3 X 3 matrix . As in the
case of a 2 X 2 matrix, the existence of an inverse for a 3 X 3 matrix depends

on the value of its determinant.

Solve the system of equations
O% L Vae=dm=lio
Pcs—3y.— Hg—2
7x +2y —6z=5

There are two methods for calculating the determinant of a 3 X 3 matrix A:

Method 1
a b ¢
A=|d e f|= deta = alei — fh) — bldi — fg) + c{dh — eg) fition
g h i We write this system in matrix form:
5 1 —4 5 1 —4\[x\ [5
For example, if A ={2 —3 -5 It |2 _?’ =3||¥) =12
7 2 -6 72 —6l\d 5

Since det A = 17 # 0, we can find the solution in the same way we did for

then detA = 5(18 + 10) — 1(—12 + 35) — 44 +21) = 17 the 2 X 2 matrix:

2 -3 —s|ly|=[2|=|r|=|2 —3 -s5] |2
7 2 —6l\d & \d 7 2 -6 V5

Method 2

Use a special set up as follows:

+ o+
a._ b b To .
detA = d\fo e — aei + bfg + cdh — gec — hfa — idb t"f'lexclhseucll)( ?ur WO}rlk, using a GDC, we can store the answer matrix as D and
AP JE T U & . - stitute t i
R Y e values into the system

5 1 —4\/ 3 L 5
2 -3 —s)l-2|=|6+6-10]|=|2
72 -6\ 2 1—4—1

Il

This arrangement is a re-ordering of the calculations involved in the first method.

[AT1[C] _
[(3 ]
[-2]
[2 1]

[AT[D] _
[[5]
2]
[57]

Figure 7.7 GDC screens [or the
solution Lo Example 7.9
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alto =14
equa 0‘2| |

'The arca of a Lriangle
with vertices {(x;, )
(x5, ), and {3, y3) 18

XN

=X,

X3

i)
V3

where

1
1
!

Use determinants (o find
the area of (riangle ABC
with A(2, 3), B(12, 3), and
(12, 9). Confirm your
answer by using the
formula for the area of a
triangle.

I ‘The three points (x;, ),
(X, y,), and (xy, y3) are

collinear if and only if
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Matrix algebra

Area of a triangle

An interesting application of determinants that you may find helpful is ﬁnding

the area of a triangle whose vertices are given as points in a coordinate plane,

Example 7.10
Find the area of triangle ABC whose vertices are

A(1, 3), B(5, —1) and C(—2, 5).

Solution
We let (xp, 11) = (1, 3), (x5, ) = (5, — 1), and (x3, y3) = (=2, 3)

To find the area, we evaluate the determinant

x|l L3 mid
X, ¥, 1= 5 =1 1= —4
x5 ¥y 1 —2 5 1

Using this value, we can conclude that the area of the triangle is

3 1
1
=|=. -4 =2
1 =[3
=7 5 1

Lines in plane

What happens when the three points are collinear? The triangle becomes a
line segment and the area becomes zero. This fact allows us to develop two
techniques that are very helpful in dealing with questions of collinearity and

equations of lines.

For example, consider the VA
points A(—2, —3), B(1, 3) and 1
C(3, 7). Find the area of

‘triangle’ ABC.
1 1
Area = |- =\--o\:o /
rea > 1 3 1 5 S
3 71 /

This result can be stated in general
as a test for collinearity.

Figure 7.8 Three collinear points

' gxample 7.11
etermine if the points (=2, 3), (2, 5) and (5, 7) lie on the same line.

fon

Set up the matrix as given above:

-2 3 1

2 5 11=2=0

5 7 1

The points cannot lie on a line because the value of the determinant is not
equal to zero.

Tro-point equation of a line

The test for collinearity leads us to a method for finding the equation of a line
c_intaining two points. Consider two points (xy, ¥,), (x,, ¥,) which lie on a given
line. To find the equation of the line through these two points, we introduce a
ge.pfral point (x, ¥) on the line. These three points (xy, y,), (x,, 3,) and (x, y) are
collinear, and hence they satisfy the determinant equation

Zar ool
":I X, v 1| =0
e o 1
vhich gives us the equation of the line in the form:
O = y)x T+ (XY + (Y, yix) =0
..ich in turn is of the form: Ax + By + C= 0

Exdmple 7.12
Find the equation of the line through (-2, 3) and (3, 7)
1PPly the determinant formula for the equation of a line.

-2 3

U=C@—Dx+@B+2Dy+(~14—-9) =0
BF 7 1

l. !
The .
= €quation of the line is—4x + 5y — 23 = 0

e

(x, )

(x5

(x,7)

=1

=Y

Figure 7.9 (x;, y,), (x5 1)
and (x, y) are collincar
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7 Matrix algebra

We can use column vectors instead of row vectors, and the calculation in Example 7.12 becomeg; The prOCCSS is as follows:

Choose a code table similar to the one below. The table depends on how

x —2 3
y 3 7=@-Tx+(-14-9+B+Dy=0 many letters/symbols you need and what Janguage you use. We are using '
1 1 1 English here, so we need a table to cater for the whole alphabet at least. 1
—4x+ 5y —23=10 :
A|B|C|D|E|F - : _.
l x —2 3 x oy 1 1B BRI G|H|T|J|K|L|M|N
| ‘The matrix A* = | ¥ 3 7 lis called the transpose of the matrix A ={ =2 3 | - 516 |7 [ 89 [10]11|12]13] 14 |
T s i clelolr]ls|rlulviwlxlylz]l:]z2]. :
1526 | 17 [ 18 [ 19|20 [ 21 [ 22 |23 |24 | 25|26 |27 | 28| 29 |

where each row of the matrix becomes a colurn of the transpose. The transpose has the same

determinant as the matrix itself. Table 7.4 Code table \

Coding and decoding messages: cryptography The first cell is for a space. |

Data encryption is essential in applications such as online banking. Encryption

ubje ctUU}. In this case we used blocks of 4 letters. [U stands for space]

Modular/clock arithmetic
In order to work efficiently with cryptography, some basic knowledge of modular arithmeticis

help(ul.

Two integers, d and b are said to be congruent modulo #, written as @ = b mod 1, if they leave th

same remainder when divided by n. For example 41 = 5 mod 12 0r 15 =3 mod 4. Alternatively,
a = bmod n also means that 5| (¢ — b). Note that41 — 5 = 36,and 12 ] 36

In calculations, using the same modulus, you can replace any integer by any integer congruent to it

For example, in mod 4, 19 X 3 = 1 mod 4 because you can writeitas3 X 3=9=1mod 4
or alternatively 19 X 3 = 57 which leaves a remainder of 1 when divided by 4.
Thus 19 X 3 = 57 = 1 mod 4.

When replacing numbers by their equivalents, itis a good idea to either add or sublract multiples

of the modulus until you reach a number less than the mod. Remember that when dividing by 7
the possible remainders are 0, 1, ..., n — L. Tor example, the closest multiple of 4 to 57 is 506.

Thus 57 — 56 = 1, which explains why 57 = 1 mod 4.

Let us describe the process with an example.

Say you want to send the message ‘isten to me please!’

1220 0 0 0 5 5
9 5 20 13 16 1 27
19 14 15 5 12 19 0

Now, multiply the coding matrix by the code matrix.

1 0 1\/12 20 0 0 0 5 5
-1 1 0|l 9 5 20 13 16 1 27
0 1 2/\19 14 15 5 12 19 0
Thisisa 3 x 3 matrix multiplied by a 3 X 7 matrix, thus the result is a
3 X 7 matrix.
31 34 15 5 12 24 5
=3 —15 20 13 16 -4 22
47 33 50 23 40 39 27

uses encoding-decoding methods in which matrices play a very important role, Then, translate the text message into codes from the table. f
The methods included here are not secure enough to use for applications such L3 |8 LTIELN T|O M| E PIL|E|A|[S|E|!

as internet banking, but they result in codes that are not easy to break and 12| 9 [19]20]| 5 [14f0]20f{15]|0[13]5]|0|16]12|5]| 1 |19]5]27 '
provide a good introduction to the ideas of encryption. .
The process of encryption s called cryptography.In cryptography, a message | Choose a non-singular coding matrix of any order of your choice. An efficic ‘l
that has not yet been encrypted is called plaintext, after the encryption process b e willuse a3 X 3 matrix. Also, for convenience, we will choose gelztilg;c:ﬁ;lla‘tg »(\)/filh

the encrypted message is called ciphertext. The process of converting the it to have a determinant of 1. For example, we will use the matrix determinant 1 is to start
plaintext to ciphertext is called enciphering and the reverse process where the 101 :\él;tizll(l;glg Islzlit[?‘:c[
ciphertext is converted to plaintext is called deciphering. One such method, -1 1 0 T S G R
called Hill’s method, involves dividing the plaintext message into sets of n 0 1 2 (or columns)

letters, each.of which is replaced by n cipher letters. This is called a polygraphic

system. Hill-ciphers require a matrix based polygraphic system. A system of s )

cryptography in which the plaintext is divided into sets of n letters, each of ISfu :::;gii{iiig Zizsuu;tcl) ei?hmtm;;lo rhrows) SISESERinRLE R

which is replaced by a set of n cipher letters, is called a polygraphic system. because our codi ghlcters to the columns, use a space. (This is so,

For example, {mathematics is a great subject} = {math emat icsU isUa Ugre atus oding matrix is of order 3.)

I



]

6. Before we give out the ciphered message, we need to replace the numbers

Ans 1 2 E )
1] R 34 15 5
2 -3 -15 20 13
3 47 33 50 23
31

Anse 4 5 6 7
1 5 12 24 3
2 13 16 -4 22
3 23 40 39 27
5

Figure 7.10 GDC oulpul

g

Matrix algebra

in pink with their congruent numbers mod 30 (This is so, because we are
using 30 codes).

e first use the code table to write out the matrix corresponding to the
cloded message:
21 21 5 19 16 12 20 26 6
8 23 28 3 13 21 10 13 12
20 23 28 22 1 27 29 25 12

The message will now be:

4 15 5 12 24 5
27 15 20 13 16 206 22
V73 20 23 10 9 27

This is equivalent to the message AQDOCOTTEMWLPJXZIEV! Next, we multiply the inverse of the coding inverse by this matrix

3 2 27421 21 5 19 16 12 20 26 6
11 1 8 23 28 3 13 21 10 13 12
1 1 2/ \20 23 28 22 1 27 29 25 12

The GDC output is as shown.

7. 'The receiver of the message will decipher the message by multiplying the
inverse of the coding matrix by the message matrix. In this case, the inverse
of the coding matrix is:

S =250 =51 13 —10 —30 0 0 -—18
=1-9 48 7R =U 35 45 -9 1 30

2 1 =1 12 0 0 19 -12 6 19 12 0
2 2 —1 Now, we replace the numbers that are less than 0 or over 30 with their
-1 =1 1 congruent counterparts mod 30.

2 1 —=1\f1 4 15 5 12 24 5 5.5 9 1320 0 0 0 12

2 2 =127 15 20 13 16 26 22 21 18 19 1 5 15 21 1 0

-1 -1 Yuz 3 20 23 10 9 27 120 0 19 18 6 19 12

Now, replacing the ciphers with letters

EULER IS MASTER OF US ALL

12 20 20 0 30 65 5
=| -39 35 50 13 44 g1 27
=11, =I§ =18 5 =1§ =4} 0

] .
Now, replace the numbers in pink with their congruent counterparts mod 30 | Exercise 7.2

12 20 0 0 0 5 5 1. Consider the matrix M which satisfies the matrix equation
9 § 20 13 16 1 27 ( 3 7) M= (2 1)
9 14 15 5 12 19 0 =% =9 35

3 7
(a) Find the inverse of matrix ( p 9)

(b) Hence, write M as a product of two matrices.

(c) Evaluate M.

Which is the matrix for the original message.

Example 7.13

You receive the following message.
(d) Now consider the equation containing the matrix N:

o -6 )

UHTUWWE??SCVPMALU!T].ZMYFLL

You also know from your sender that the coding matrix is

3 2 2
IO | (i) Express N as a product of two matrices.
1 1 2 (ii) Evaluate N,

Use Table 7.4 to decode the message. (€) Write a short paragraph describing your work on this problem.

If numbers are to be
included in messages,
then you can extend
the code table by 10 to
represent the integers
from 0 10 9. Your mod
will then be 40.
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Matrix algebra

2. Find the matrix E in the following equation.
(1 3> ( 1 0> ( 1 ())
= E
3 4 3 1 0 -5
2 M==3 1

3. (a) Prove that the matrix A =11 1
3 ¥+==2 8k—3

—3should have an inverse,

(b) Write out A~ L.
(c) Hence, solve the system of equations

2x =3y +z=42
w+ yi— 3z= =11
3x —2y—3z=29

4. Find the inverse for each matrix:

CESR |
2 2
(a) A=
1 B '
2 2

a 1
(b)B:( 3 )
a+ 2 aJrl

5. For what values of x is the following matrix singular?

<x+1 3 >
A=
551 = i 58S &)

200 g —2' =3 4
6. Find » such that|2x 2 0 |istheinverse of| 1 2 -2
2 1 4n 3n 2 —5n

7. Consider the two matrices A = <§
(a) Find X such that XA = B
(b) Find Y such that AY = B
(¢) Is X = Y? Explain.

8. Consider the two matrices

2 0 -1 3 =1 1
P=|3 5 4land Q@ =14 0 0
AL QML ==I] IR==D ISp=3 |

(a) Find PQ and QP.

(b) Find:
i P! (i) Q7' (iii) P7'Q™"
(iv) Q 'P! v) (PQ)™ (vi) (QP)"!

(c) Write a few sentences about your observations in parts (a) and (b).

9, Consider the matrices

3ire=2 1 =29
A=i—-4 1 —=3] B=| 37
1 =5 1 —24

(a) Find the matrix C where AC = B
(b) Solve the system of equations

3x—2y+tz=-29
4x —y + 3z = =37
—x+5y—2z=24
10. Solve the matrix equation:
<2 2+x>< 3 x)_( 3 x><2 T |5
5 4+x/\x—4 2 x—4 2/\5 4+x>
11. Consider the matrices A and B. Find x and y such that AB = BA
2 1 2—x 1
(@) A= ( ) and B=
5 3 56y
3yl 13 iy K X
(b) A = ( ) and B=
-5 2 5x
BNl Y% x
(c) A= < ) and B=
=5 2 Sx—y+1 y+x

12. Use matrix methods to find an equation of a line that contains the given
~ points.

(a) A(-5, —6), B(3, 11)
(¢) A(~5,3), B(—5, 8)

(b) A(5, —2), B(3, —2)

13,
3. Find the area of the parallelogram with the given points as three of its

vertices.
(@) A(-5,-6),B(3,11), C(8, 1)
(c) A(4, ~6), B(—3,9), C(7,7)

(b) A(3, —5), B(3, 11), C(8, 11)
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Matrix algebra

14. Find x such that the area of triangle ABC is 10 square units,
(a) Alx, —6), B(3, 11), C(8, 3)
(b) A(—5,x), B(3, x+2), C(x*+2x — 3, 1)

15. Find the value of k such that the points P, Q, and R are collinear.
(a) P(2, —5), Q(4, k), R(5, —2) (b) P(=6,2), Q(=5, k), R(=3,5)

2 7
16. Consider the matrix A = <5 5). Define fix) = det(xI — A) where x is

() is called the
e p()lym:;ﬂ any real number and I is the identity matrix.
(a) Find det(A).
(b) Expand f(x) and compare the constant term to your answer in (a).
(c¢) How is the coefficient of x in the expansion of f(x) related to A?
(d) Find f(A) and simplify it.
(e) Now repeat parts (a)-(d) with matrix B = <a Z)
¢
A7 1
17. Consider the matrix A ={—1 3 2
S5Ti5 =4
Define f(x) = det (xI — A), where x is any real number and I is the
identity matrix.
(a) Find det(A).
(b) Expand f(x) and compare the constant term to your answer in (a).
(c) How is the coefficient of x2 in the expansion of f(x) related to A?
(d) Find f(A) and simplify it. W by
() Now repeat parts (a)-(d) with matrix B=(d ¢ f
ho i
18. (a) Use Table 7.4 to decode the following message, given that U stands
for a space.
| S.TPEHZO!WPOSWYSFPV!IFRGIUTGMEBSH
2 2 3
The coding matrixis{2 3 2
I 1 2
(b) Choose an appropriate matrix of your own, code your answer and
decode it.
228

Further properties and applications

n question 8 of Exercise 7.2, you were asked to make some observations
concerning the answers to parts (a) and (b). The question shows some
.properties of inverse matrices.

You should have found out that:

SO 20 20 20
g, 2 -2 2 |7 1 26
PQ - Q 5 5 5
~ B 0 o _7 1y
20 20 20
7. 1 11 _
20 20 20 : =
23 2 12
L 17 1 26 O
PQ' = & Tz T (QP)~'=| 5 5 5
109 7 _157 —4 % 2

20 20 20

So(PQ)~'# P7'Q 7!, but (PQ) = Q! P!
@'Ild (QP)~1 — P—lQ—l

This leads to the following general resul.

When A and B are non-singular matrices of order n, then AB is also non-singular and
(AB)'=DB"A"!
The proof of this theorer is straightforward:

To show that B~'A~11 is the inverse of AB, we need only show that it conforms to the definilion of
an inverse matrix. That is,

(ABYB~'A") = (B~'A~") (AB) = [
Now, (AB)(B~'A~") = ABB YA—1=ANA~' = AA~' =]
Similarly, (B~'A"") (AB) = B~'(A"'A)B = B—1(DB = B—1B =

Hence, AB is non-singular and its inverse is B~'A ™"

“We can prove the last property using the third property.
Since A4~ = I, then

1

det(AA~1) = detI=detA -detA~! =1 =detA~! =
detA

-
3 Section 7.2, we solved a system of equations using inverse matrices.
. ©Method works only when the system has a unique solution. In many cases,

'¢is either an infinite number of solutions or the system is inconsistent.

"¢ can use another method of solution.

Non-singular matrices
also have these

properties:
AN r=4
(cA)~t = %A"; c#0

del{AB) = delA - detB

detd1 =L

delA




Note that the order in
which we apply the
operations is not unique.
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Some terminology

In Section 7.2 we learned how to solve a system of equations by writing the
system in matrix form. When the system has a unique solution then it can be
solved. However, the method is limited and it has a strict constraint. If we use 4
slightly different arrangement, we can use matrices to find the solution whethey

Switch row 1 and row 2:

x+3y+2z = 1 1 3 21 1

Il

2x+y-—z 2&(2 1 —1]2

it is unique, there are an infinite number of solutions, or simply no solution. 2x+ 4y + 6zn = B 4 616
We write the system as follows. ] 1
- Multiply row 3 by 5
2 3 —4 8 l
0 2 4|[l=% x+3y+2z = 1 1 3 211
1 0 —2 x+y—z = 2&(2 1 —-1]2
x+2y+32z = 3 1 2 313

This called the augmented matrix of the system. It is customary to puta bar
between the coefficients and the answers. However, this bar is not necessary
and we will not be using it in this book. Just remember that the last column is

the answers’ column.

! Multiply row 1 by —2 and add it to row 2, and multiply row 1 by —1 and add
it to row 3 (we replace the second row with the result):

x+3y+2z = 1 1 3 ) 1
Gauss-Jordan elimination =5y—5 = 0&|0 -5 —5 |0
The idea behind this method is very simple. We apply certain simple operations. —y+ 2z = 2 0 -1 1 b

to the system of equations to reduce them into a special form that is easy to
solve. We keep applying the operations until we have a form that is easy to
solve. The operations are called elementary row operations and they can be
applied to the system without changing the solution to the system. That is, the '

Note that row 1 did not change and rows 2 and three were replaced with the
result of the elementary operation.

] Multiply row 2 by —%

solution to the reduced system (reduced row echelon form) is the same as that e+ 3yt = 1

for the original system. We can apply the operations either to the system itself ] 1 32 |1
or to its augmented matrix. As it is easier to work with the augmented matrix, 1 y+tz = 0&10 I 1|0
we recommend that you first write the augmented matrix, reduce it, and then —y4+ 2z = 2 W0 -1 1]

write the equivalent system to read the solution from. :
‘Now, add row 2 to row 3, and multiply row 2 by —3 and add it to row 1:

There are three types of elementary row operations: (x — B Lo ¥
« multiply any row by a non-zero real number 3 y+ z = 0&|o 1. 1 lo
2z = 22 Nolo 2 |2

* interchange any two rows

« add a multiple of one row to another row. Now multiply row 3 by % :

We will demonstrate the method with an example.

* =z =1 mwig =1
Example 7.14 yt z = 0&f01 110
z = 1 0 0 11

Consider the following system with its augmented matrix and simplify it to"

1
its reduced row echelon form. Lastly, add row 3 to row 1, and multiply row 3 by —1 and add it to row 2:

S (x = 2 0 0|2

+y—z = 2 pp | -1|2 |
H3YyFw = N3 2] ' ) Y = —lelo 1 0 |—-1
2x+dy+6z = 6 2 4 6]6 ' z = 1 W 011

As . .
03’011 can see, this last system is very easy to read the solution from.
can verify that this solution is also the solution to the original system.

1(')/
21

S8
ol




7 Matrix algebra

y+2z=0 0

[A] The simplified matrix is in its reduced row echelon form.
! ({2 1 -1 21 ” gxample 7.16
| [1 32 11 Of course, when we do the work, we do not have to show the processes in | " _
246 6l parallel. We just perform the operation on the matrix and then translate it intg Reihasystemiofiequations;
TTef( (A1) the equation form at the end. ! mty—z = 4
(100 2]
L E8 % (1) 11 % : You can carry out this whole operation easily using a GDC. x+3y+7z = 7
2x + 4y + 8 =
ligure 7.11 Carryingout the Example 7.15 Y 2 10
operation ona GDC P! e
Solve the system of equations:
x+y+iz=1 ~ $oiution
% b z=2 The augmented matrix is:
i — —
i1 y + z=0 2x + y—z = ’ 1 -1 4
i x+3y+7z = Z7&l1 3 7 7
'. Solution 2xt4y+8z = 10 4 8 10
The augmented matrix is Swap rows 1 and 2:
x+y+2z=1 1 2h x+3y+7z = 7 o3 7 7
¥ + z=2e|1 0 1 2 xty—z = 4&2 1 -1 4
1 1 0
2:

Multiply row 2 by —1 and add to row 3; multiply row 1 by —2 and add to

Multiply row 1 by —1 and add to row
row to 2:

x+y+2z=1 1 1 2 1

—g— z=lal0 -1 —1 1 x+3y+7z = 7 i 3 7 7
y+ z=0 W0 1 10 “Sy- 15z = ~l0efo -5 —15 10
3y+9z2 = 6 0 3 9 6

Add row 2 to row 1 and row 2 to row 3:

X +z=2 1 0 1 2 \ ultiply row 2 by —é; multiply row 3 by %z

2x+4y+8 = 10 2 4 8 10
|
i
|
\

—g=z=lel0 -1 -1 1
x+3y+7z = 7 :
y+ 3z = 2&
: H %) % % % At this stage, work can stop because if you write the last row as an equation, 0 1.3 2
(01101 then it reads y+3z = 2 0 1 3
rref( EP[x% )0 101 Ox -+ 0y+0z=1 'Olﬂtliply row 2 by — 1 and add to row 3; multiply row 2 by —3 and add to
ow
: E8 (1) 8 ({ % ] This statement cannot be true for any value, and hence the system is "
inconsistent. xt3y+7e = 7 1 0 =2 1
Figure 7.12 GDC screens for ' =
the solution Lo Iixample 7.15 You can also use a GDC. y+3z 2¢(0 1 3 2
0 = 0 0 0 0 0

¢ the last row is all zeros, there is not much that we can do.
1€ conclusion is that this last row is true for any choice of values for

: _ei:?:l'iables. Now we are left with a system of two equations and three
“f1ables,
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7 | Matrix algebra

x —2z = 1

y+3z = 2

We need to solve for two of the variables in terms of the third. A wise choice
here would be to solve for x and y in terms of z. That is

Fit a quadratic model to pass through the points (—1, 10), (2, 4), and (3, 14)

solution

x=1+2zy=2—3z
The problem is to find parameters a, b, and ¢ that will force the curve
il

i
This means that for every choice of a value for z, we have a corresponding
1l

| solution for the system. For example, if z = 0, then the solution would be

I (1,2, 0), for z = 2, the solution is (5, —4, 2), and so on. This means that we
have an infinite number of solutions. So we present the solution in terms of Gince we need to find the three unknown parameters, we need three
a parameter such as t. We let z = £, and our general solution would then be R e R T 8 ot above.,

fix)=ax>+bx +c¢
f=1)=a-b+c=10

fl2)=4a+2b+c=4
f3y=9a+3b+c=14

representing the function f(x) = ax? + bx + ¢ to contain the given points.
This means f{—1) = 10, f(2) = 4, and f(3) = 14

(14 2t,2 — 3t 1)

| Reduced row echelon form
| A matrix is in reduced row echelon form when it satisfies the following
properties:
o Tfthere are any rows consisting entirely of 0s, they appear at the bottom of
the matrix.
« In any non-zero row, the first non-zero entry is 1. This entry is called the

|
This is clearly a system of three equations which can be solved using matrix 1
methods. |

I

I'Using the reduced row echelon form, we get the following result

1 =1 1110 1 0 0 3
4 2 1| 410 1 0] =5
9 3 1114 0 0 1 2

pivot of the row.
« For any consecutive rows, the pivot of the lower row must be to the right of
the pivot of the preceding row.

e Any column that contains a pivot, has zeros everywhere else. Whi
ich means thata = 3, b = —5, and ¢ = 2, so the function i
> s 5 1 18

Matrix A is in reduced row echelon form, but matrix B is not. fix) = 3x2 — 5% + 2

0 3 0 5 8 -
0 1 4 0 4 2 14+
A= ' (3,14)
0 0— 0— 5 2 h 121 ‘
6o o 0 0 0 0 (-1,10) i) e T} 51 1 10] i
(4 2 141 l
[9 3 1 141
1 o o 2 3 4 5 rref( tai ]
o o o 1 3 6 7 Lo ey e
B=lo 0 1< 0 2 2 1 _ 2\ [0 012711 |
o 0 0 0 0 0 0 - 0 i ; - = ‘
o 0 0 0 0 0 e ArB] (3 1 '
tquivalently, we can use the inverse matrix directly: [=5]
) . [2711
Curve fitting 1 =1 t\/a\ 10\ [a, [ -1 1,710 3 2
Another application of matrices (systems) is to help fit specific models 42 1||lb|=| 4|e|b|={4 2 1 4)=[-5 i
3 Ve 14 c 9 1/ \14 2

Figure 7.13 GDC screens [or

to sets of points.
the solution to Tixample 7.17

| You capy also use a GDC.




236

Matrix algebra

6

0). Find the values of the real numbers 7 such
—1

that det (A — mI) = 0, where I'is the 2 X 2 multiplication identity matrix,

1. Let the matrix A = (

2. (a) Find the values of a and b given that the inverse of the matrix

a —4 —6 12 =2
A=|—-8 5 7)isthematrix B={ 3 b 1
-5 3 4 -1 1 3
(b) For the values of a and b found in part (a), solve the system of linear -
equations
x+2y—22=5
3x+by+z=0
-x+y-—3z=a—1
1 - m 1 |
3. Find the value(s) of m so that the matrix{ 3 1 —m 2 is singular.
m -3 m-1 |

4. Solve each system of equations. If a solution does not exist, justify why not,

(dx—y+2z=—5 (4x — 2y + 3z = —2
(a) 42x + 2y + 3z =10 (b) {2x + 2y + 52 =16
[5x — 2y +6z=1 [8x — 5y —2z=4
(5% —3y+ 22=2
(c) {2x+2y—3z=3 (d){—4x+y—3z=37
Lx—5y+z=-24

(3x— 2y +2=—29

(x— 7y +82=—4
(2x + 3y +5z2=4 (2x + 3y +5z=4
(e) $3x + 5y +9z=7 (f) {3x+ 5y +9z2=7
(5% + 9y + 172 = 13 (52 + 9y + 172 =1
(—x + 4y — 2z = 12 (x=3)—2z=38

(g) 42x — 9y + 5z = —25 (h) {—2x+7y+3z=—19

[—x+ 5y —42=10 x—y—32z=3

5. (a) Find the values of k such that the matrix A is not singular.
1 1 k—1

A=k 0 -1

6 2 -3

(b) Find the value(s) of k such that A is the inverse of B, where
k=28 " =g k
B =03 ke 2l
54 —4 1

(c) For the value of k found in part (b), apply elementary row
1 1988 =1 SE 0090
operations to reduce the matrix{k ¢ —1 0 1 o0]into

O 0 0 1

| 1 0 0 a b ¢

0 1 0 d e f|wherea, b,c, .. iaretobe determined.

001 g h i

6. (a) Find the values of k such that the matrix A is not singular.

2 =17 k+9
5 3 5
A=| -1 21 =13
5 5 5
' =2 "3 —p

(b) Find the value(s) of k such that A is the inverse of B, where
k+1 1 k
B = 2 k+2 =3
3 6 —5
- (¢) For the value of k found in part (b), apply elementary row operations
2 =17 k+9|1 0 O
to reduce the matrix -1 21 —13(0 1 O
5k-2) 15 —10]0 0 1
/1. 0 0la b ¢
into|0 1 0[d e f|wherea,b,c,..iaretobe determined.

0 0 1|g h i

. Use ellel.nentary row operations to transform the matrix [A|I] to a
matrix in the form [I|B]. Comment on the relationship between A and
B and support your conclusion.

2 0 3|1 0 O
C@1-1 1 1jo 1 0

F 2ol 2,000 (llk0s] 031
1 4 6|1 0 0

® 2 -3 1]0 1 0
-1 18 16]/0 0 1




| There is more than one
curve.

00
/3.\)( ]

: . N . multiply an n X i ' ,
8. Determine the function fso that the curve representing it contains the If we multiply an 7 X' matrix by an n X 1 vector we will get a new n X 1
indicated points vector. In other words, Av = w

B o L contain (— L, 5), (2, — 1) and (4, 35) However, instead of just getting a brand new vector out of the multiplication,

would like to know if it is i i :

A M ontain (— 1. 12) and (2, —3) we 3 ) is possible to instead get:
Av = Av

In other words, is it possible, for certain A and v , that matrix multiplication
js the same as multiplying the vector by a constant? The answer is yes, it is
ézPOSSIble for this to happen, but it won’t happen for just any value of A and v.
"There is a particular value of A and v for which this works. They always occur
in pairs and A is an eigenvalue of A and v is an eigenvector of A.

9. Consider this system of equations.
2x+y+3z= -5
3x—yt+4z=2
5x+7z=m—>5
Find the value(s) of m for which this system is consistent. For the value

. In order to see how we can develo ing ei
of m found, find the most general solution of the system. i fgr ﬁnd—l'ng TSR

eigenvalues, we start at the original equation Av = Av

] ) e A > -
Firstly, we must make sure that v # 0. If v = 0, then Av = Av will be true for

10. Consider this system of equations.
any value of A.

=3x+2y+32=1
‘Now, rewriting the original equation and simplifying:

- -
Av = Av

A =AW =AY — A =4 —ADY =0

4x—y—5=-5

x+y—2z=m—3
Find the value(s) of m for which this system is consistent. For the value
of m found, find the most general solution of the system.

Note that before we factored out the v we added the identity matrix I. This is
equivalent to multiplying by 1. We needed to do this because without it we

3 —4 —6 -
T IR i 4 , vbvogld have had the dlfferenfe of a matrix, A, and a constant, A, and this can’t
) 3 \ ¢ done. We now have the difference of two matrices of the same size which
5 can be done.

In order to find the eigenvectors for a matrix we will need to solve a

(a) Find det(A).
‘homogeneous system. If a system is written in matrix form as you recall from
-

(b) Add a multiple of one row to another row to transform the matrix A
into matrix B in triangular form.

(c) Find det(B). ) {'" _3 5

3 —4 =6

—8 5 7

-6 —5 3 4

?CCtl.On 7.3, we will either have the trivial solution, 17 = 0, or we will have an
infinite number of solutions.

A . . .
: homogeneous solution can have an infinite number of solutions if the
coeflicient matrix is singular.

(d) Use a GDC to find det(C) for C=

i . X
if),dtg solve the equation (4 — /\1)1_/> = 0, the matrix A — AI must be singular.
an. _ _ q_ B ]
e S dét (Aence dejt (A — AD = 0. This is called the characteristic equation.

— AD is called the characteristic polynomial.

. Example 7.18

7'4| Eigenvectors and eigenvalues

Fi i i |
ind the eigenvalues and eigenvectors of the matrix A = ( z 7>
-1 —6

S

or. We usuau_y

Recall that if a matrix has one column, it is called a column vect
tors in-

denote vectors with an arrow as shown. (You will learn more about vec

Chapter 9. T i
apter 9.) The first step is to find the eigenvalues.

a
a
;:(b>0r;: 7 A‘)\Iz( 2 7>—A<1 O>:<2—)\ 7
) =11 =6 0 1 5l —6— A

Coverage in this course is
limited (0 2 X 2 malvices
only.
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7 Matrix algebra

In particular we need to determine where the value(s) of A for which the
determinant of this matrix is zero.

dettA—AD=Q - A(-6—-A)+7=A+4rA—-5
Thus, the characteristic polynomial is A* + 4A — 5
Now, finding the zeros of this polynomial will give us the eigenvalues
M+ 4A—5=A+5A -1 =0
= A= =5A=1
Each of these eigenvalues will generate an eigenvector.
For A, = —5: |

5 7 AV L [
(A—/\I)V:0=>< X 1)1/:0

o (a ( 7 7)-61 0 7a+7b=20
Letv = )ﬁ ()=<>:>
b, —1 —1/\b 0 —ag-b=0

We can either use simple addition of 6 times the second equation and add it

to the first, or use Gauss-Jordan method:

a+b=0:>b-———a——‘>1_/’=( a)
—a

‘This is a general eigenvector, but in fact we usually need specific vectors, and
1

. -} .
hence any value for a will suffice, say @ = 1 here. Therefore v = isa

first eigenvector. Note that for any other choice of a, the resulting vector will |

be parallel to this one.

For A, = 1:

, - 2
(A — ADv 0:><

( 1 7><a> (0> { a-+7b=

= = =

il =74k 0 —a—7b=0

Again, this will lead to
a+7b=0=a=-Tb=V = <_5b>

Using b = 1 (or any other value, not zero, of your choice) we have

- -7
Vv = ( ) as a second eigenvector.
1

2 7\ {—1 5 -1
Note that ( )( ) = ( ) = —5( ) as required, and
-1 —6 1 =5 1
€ D00 (5 < e
= = as required.
-1 —6 1 1 1

240

¢ Q AT v 1y 1 >> o N
I A is a square matrix, and if v is an eigenvector, then any scalar multiple k¥ is also an eigenveclor,
. AN T . '
I A is a square matrix and v and  are eigenveclors, (hen ?l + »?/ is an eigenvector

IfA IS 4 SqUiare matyix, and if A is an eigenvalue and v is a corresponding eigenvector, then A" is
an eigenvalue and v is an eigenvector of A”. ‘

Find the eigenvalues and eigenvectors of the matrix A = ( - ) and the
matrix A%, 2 4

Solution

The first step is to find the eigenvalues of A.
‘ A—)\I=<1 —1>~/\<1 0>:<1v)\ -1
_ 2 4 0 1 2 4—- A
| The determinant of this matrix must be zero.
IR
det ( i ) =0
2 4—A

= AN -5A+6=0
:>/\1:2,)\2:3

l For A, = 2:

- = = -
(A—AI)J:O:( ! 1)3:0
] q 12 2
il :><_1 —1><a> <0>:>{—a—b=0
| 2 2/ \b 0 2a +2b =0
-_:olving for a and b will yield an infinite number of solutions such that
0= —q

Il

| i £y,
us, any vector of the form v = ( t) is an eigenvector. Just for

de€monstration purposes, we have:

6= (o)

U
TN
S

|
—
T
LS R N Y
SN’

It
TN
o O
N’

U
r-_/‘\
N8
QN
o -l
S
I
o O
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7 Matrix algebra

Solving for a and b will yield an infinite number of solutions such that
b= —2a.

N

) is an eigenvector.

A
Thus, anyvector of the form v = <

Also, for demonstration purposes, we have:

- (2= () =)

For A* the eigenvalues are 2* and 3* with the same eigenvectors as before.

iz

o (—49 —65) ; (—49 —65)( t) =
= an =5
130 146 130 146/\—t

—49 —65 t 81t
and ( < =
130 146 / \—2t —2t

Example 7.20

1
Find the eigenvalues and eigenvectors of the matrix A = (6 2>

Solution
A )J‘(L l> )\(1 0)_(1—)\ 1 >
6 2 0 1 6 2-A
dettA—AD =0 —-MNQ2—-A—-6=A—-31-4=0
= A’l — _1, /\,2 = 4
For A, = —1:
- bl 2 1 iy =
(A—/\I)v=0:>< >v=0
6 3
2 1)'“' (O) {2a+b=0
= I={,)=
(6 3 (b 0 6a+3b=0
Solving for a and b will yield an infinite number of solutions such that
b= —2a

= AW .
Thus, any vector of the form v = < ) is an eigenvector. Also, for

demonstration purposes, let us choose t = 1

2= =Gl

B — b —

ShEs bl fr g

-~ Solving for a and b will yield an infinite number of solutions such that b = 3a

- t
'I Thus, any vector of the form v = <3t> is an eigenvector. Also, for

F demollstl'ation purposes, let us ChOOSG =1
- T L 4 1
6 2/1\3 i 3

~ To find eigenvalues and eigenvectors ol a square matrix A:
1 form the matrix A — AT

When the characleristic

equalion gives distinct
real eigenvalues,

the corresponding
eigenveclors are said to
be linearly independent,

o solve the equation det (4 — AD = 0; the real solutions are the eigenvalues of A

o for each eigenvalue A, form the malrix A — AyJ

- =
| e solve Lhe homogeneous system (A — A )X = 0

The proof is straightforward.

LetA=<a b)
0 ¢

‘Then, det(A — AI) = det(

OrA=¢

Eigenvalues of
triangular matrices
The eigenvalues of a
lriangular matrix are its
diagonal entries.

\Jf

a— A b

)=0:>(a—)\)(c~)\)=0:>/\=a
0 c— A

Diagonalisation

4
Why is thi ? 9 i i =
o y is useful? Suppose you wanted to find A If A can be diagonalised, N 4 square marrix A can
Hen: r) be diagonalised if it has

the property that there
exists a matrix P that has

A? = (PDP~1)? = (PDP~\)(PDP 1)(PDP™})

= PDP~'PDP-'PDP! = PD(P'P)D(P~'P)DP ! an inverse and a diagonal
1 matrix D such that
But p-1p = 1 5o, A=rpDP.

A’ = PD(P~'P)D(P~'P)DP~! = PDDDP~! = PD3pP !

In general, when
- A=PDP! then

- A= PDIIP*]

249
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7 Matrix algebra

diagonalistion theorem which stales that an # x 11 malrix A is diagonalisuble il and

|
) The connection between eigenvectors, eigenvalues and diagonalisation is given by the
only if A has n linearly independent eigenvectors.

Ifwy, Vs o, v, arelinearly independent eigenveclors of Aand Ay, Ay, -+, A, are their
corresponding eigenvalues, then A = PDP ™", where 2
P = (v, v, =, V) ie Pis the matrix whose columns are (he eigenvectors, and i3 " -1
. A 0 0 0 =( 1 l)<(—1)4 0) 5 5
4 p|0 % 9 0 -2 3/\ o 4|2 1
0 0 0 5 5
0 0 0 A,
‘ 3 =k 3 —1
:(11)(1 0)5 5 (12563—5'
Example 7.21 =2 3/70 256/(2 1 -2 768) P
5 5 #5

1 1
Diagonalise the matrix A = (6 )

_(103 51)
2 306 154

Example 7.23

Solution
I This is the same matrix as in Example 7.20, so the eigenvalues are —1 and 4.

' The eigenvectors are F .
8 Given that A’ is the transpose of a matrix A, prove that A and A* have the

|
1 1 i
I ;: P < ) and ¥ = ( >, andleeh z_ime eigenvalues.
=7 3 ¥
: . ( 1 1) n (—1 0) Salution
=25 B 0 4 Recall that the eigenvalues of A are the solutions to its characteristic equation |
Therefore . det(A — AD =0
- -1 -8
i T (1 1> _ ( 1 1) ( 1 0) < 1 1) In order to find the eigenvalues for A?, we find its characteristic equation.
_ 6 2 =72 =3, 0 4/\—2 3 'owever, remembering that a matrix and its transpose have equal
: HeE Zmat 'B (Mat[ 1A )1] To verify that the equation above holds, we perform the multiplication on determinants, we have
(6 2 the right-side of the equation: y = _ . :
| Figure 7.14 GDC screen u] J j 3 1 - det (A — AD = det (A — AD' = det (A" — AI') = det (A' — AD |
S :ﬁﬂlﬁzn . EX";m};liC;.L;ln or the ( 11 (_1 0) 1 . 1 4\(5 3 |_ 1> }/[thlch means that both A and A* have the same characteristic polynomials. '
—2 3/\ 0 4/\-2 3 23 a2 i 2nts e : erefore, A and A’ have the same eigenvalues. !
| 5 5 |
| "‘-'Kampl = |
- e o |
Example 7.22
| Giventhat A= (), calculate A* : o |
I iven that A = <6 2>, calculate A et A be the matrix A =| 2 0 —4
‘ =i 1 =2
Soiution Ind a diagonalisation of A.
| From Example 7.20:
-1

| S AN I |
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| S O S VO e S SRR
Solution

ﬁ

Solution

The characteristic equation of A is The situation described is a part of a sequence of experiments in which

o check that P is non-singular (has an inverse).

o form the diagonal matrix D where the diagonal entries are the eigenvalues found earlier. It is very useful to describe the Markov process by a transition matrix.

The transition matrix gives the proportion going from one state to another.
For example, in this question.

ol . _4 the outcomes and their associated chances depend on the outcomes of
recedi i ) i iversi
PR Ty iy - th'e p 1r‘1g experiments. So, for this case?, the percentage of university-
oriented children, depends on whether their parents went to university,
=1 ] #7247 A and for those in turn, their parents and so on.
=—A+DA+22A—-2)=0 i
(A + 1) Such a process is called a Markov process. The outcome of any experiment |
And so, the eigenvalues of Aare Ay = —LA, = —2,A; = 2 is called the state of the experiment. '
We use the Gauss-Jordan method to find the eigenvectors: A tree diagram helps to show the situation. Let C stand for university Current  Next 1|
A ) 2 educated person and N for not-university educated. state state
- - - ] 3 : :
| so=labv, =11y =1 The first generation has 30% university educated, and hence 70% are not. 0.85 J
f 1 0 In order to find the percentages for the third generation, we first establish
- =5 i o | 0 the state of the second generation. 0.30 s I
. _ _ . ) _ 0.15 I
Thus, D = T e T p-!= 1 =1 1 The university educated children, C, in this generation could come from N I|
| S e
| : ) 1o a ! = university educated parents 0.30 X 0.85, or from not-university educated 035,/ i
T parents 0.70 X 0.35 070 N ‘
I . o [ v
. We have the factorisation: i i i i |
Mat Amat BMat A)- The proportion of university educated children in the next generation is: 0.65 ’
[ 11 _q T L S I S TR 0.30 X 0.85 + 0.70 X 0.35 = 0.50 N
B l _2 - = i _ . . . . . . . i Tree
1 2 0 4 2 1 1 0 2 0 1 1 1 The children without a university education, N, in this generation could Z:fglr;?tif llf::olulion
. 1 10 0 0 2 1 0 —1 come from university educated parents 0.30 X 0.15, or from not-university to Example 7 25
Figure 7.15 GDC screen for the educated parents 0.70 X 0 -
solution to Example 7.24 You can use a GDC. b ‘ 45
] The proportion of children without a university education for the next
generation is: 0.30 X 0.15 + 0.70 X 0.65 = 0.50.
' To diagonalise a square matrix A: For the third i i
eneration we will i
:) o form the matrix A — AI and find the eigenvalues and eigenvectors as before ones, i.e. ei ghtg s el haze ¥ exlp;nd A e R R l
, L.e. ssible o i i
o use the eigenvectors found as columm vectors to form matrix P in ; i P u S e L G DU '
will look if you want more generations. "

Now, A = PDP~' (equivalently, D = P~'AP)

Current state
|

C N
0.85 0.35\ C
) Next state |
|

v \[} .-_ T | -._ — )
"Markov chains

This is an introduction to Markov chains. More details will be given in
Chapter 15.

| 0.15 0.65/ N
The initial state is
X\ /030
<J’0> - <0.70>
And thus, the next generation is

<0.85 0.35) <0.30> - (0.85 % 0.30 + 0.35x 0.70 0.50
0.15 0.65/ \0.70 0.15x 0.30 + 0.65 % 0.70) " (O.SO)

- Example 7.25
' In a rural town, a survey indicated that 85% of the children of university
educated parents went to university, while only 35% of the children of
parents that do not have university education went to university. What
percentage of the second generation went to university if initially 30%
of the town parents were university educated?

~

-
24
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For the second generation, we just multiply the transition matrix by this

(0.85 0.35) <0.50> = <0.85 x 0.50 + 0.35 x 0.50) s (0.60)
0.15 0.65/ \0.50 0.15 x 0.50 + 0.65 x 0.50 0.40

result "
(a) The transition matrix is;

Current state

S
Or, put differently 0.97 0.06\ C
e B 94) . Next state

(0.85 o.35>2 (0.30) K <0.5o>
0.15 0.65/ \0.70 0.50

We can summarise the steps as follows.

The initial state is:
Xo\ (975000
<)’0) y (525 ooo)
One year from now, is one stage above the initial one

0.97 0.06> (975 OOO) _ (977 250
0.03 0.94/\525 000 522 750)

2

.

In a two-state Markov process, we let the proportions of moving from one state to the other be
r/]. given by a (ransition malrix
From
o Py P
r="1,
P2 Pua
where pi, j represents the proportion moving [rom slate / to slate j. (from CloNorfromN N, ..,

in the example). Note thal the sum of the entries in each column must be 1.
We also let the initial state be represented by

X, =TX, = <

(b) 10 years from now:
0.97 0.06\"

X, = TX, = ( 6) (975 OOO) " <990 264>
0.03 0.94 525 000 509 736

X ! .
Xo= <),(())> , then the state after 1 experiments will have a state represented by

| Example 7.27

X, = T"X, - . ! =
A taxi company divides the city into three zones: I, II, and III. The company

d‘:etermined from previous records that 60% of passengers picked up in zone
['stay in zone I, 30% go to zone Il and 10% to zone III. Of those picked up
in zone II, 40% go to zone I, 30% to zone I, and 30% to zone II1. Of those

For more state cases, the matrices will be of an appropriate order. For example,
in a 3-state process

P Par Pan X0 picked up in zone III, 30% go to zone I, 30% to zone II, and 40% to zone IIL.
T=|pi2 P22 P32)andX,=|)o 'E- the beginning of the day, 80% of the taxis are in zone I, 15% are in zone
Pixa_[Pnsm Do Z I, and 5% are in zone III.

(a) What is the distribution of the taxis after they have each made one trip?

(b) On average, all taxis make 20 trips per day. What is the distribution by
the end of the day?

This process can also be done with horizontal vectors. 'That is
Pry Pia P13

X, =XoT" = (xp: yoo 20| P21 P2z P23

P31 P32z P

This means that the sum of entries in each row must be 1.

n

Solution

| 0.6 04 0.3 0.80
- £=103 03 03}X,=]0.15
0.1 03 04 0.05

Each year 3% of the population living in a certain city will move to the
suburbs and 6% of the population living in the suburbs will move into the
city. At present 975 000 people live in the city itself, and 525 000 live in the
suburbs. Assuming that the total population of the area does not change.
find the distribution of the population: b 06 0.4 0.3\/0.80 0.471

(a) 1 year from now Q"X10:T10X0= 03 03 03f[0.15]=]0.300
0.1 03 04/ \0.05 0.229

: 0.6 0.4 03\/0.80\ /0.555
@ X, =1x,={03 03 03]0.15|=]0300
0.1 03 04/%0.05 \0.145

(b) 10 years from now.
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Eigenvalues and eigenvectors can be used to evaluate the powers of Lransition matrices.ﬁ
The approach is similar to what we did with diagonalising matrices earlier. In Example 7.26,
we can diagonalise the transition matrix

0.97 0'06> = (2 1><] 0 )l<1 1) . which will enable us to find its
0.03 094 1 -1\ 091/3\1 =2 powers more easily.

e s e o

1. For each matrix:
(i) find the characteristic polynomial
(ii) find the eigenvalues and eigenvectors

(iii) diagonalise the matrix.

winl ) wal )

@a=(2 ") @a=, ) ®4=(, )
il wasl Y wacl)
oa-( ) wa=(3,) O =3 3
(m)A;(; a;) ma= ) @ 4= 12)

15 -8 —=5 4)
= A=
(p) A (18 —15) @ <—8 7

2. The transition matrix for a Markov process is given by

State

1 2
<0.3 0.6) State 1
0.7 0.4/ State 2

(a) What does the entry 0.3 represent?
(b) The initial-state distribution vector is given by
_ State 1 0.4>
° State 2(0.6

Find the distribution of the system after one observation.

3. Kevin is either happy or sad. If he is happy one day, then he'is happy the
next day four times out of five. If he is sad one day, then he is sad the P
next day one time out of three. Over the long term, what are the chan
that Kevin is happy on any given day?

(9]

- 4. Three grocery chains serve a large area in a certain country. During the

year, grocery A expects to retain 80% of its customers, 5% are lost to
grocery B, and 15% to grocery C. Grocery B expects to retain 90% of its
customers, and loses 5% to each of the other two groceries. Grocery C
expects to retain 75% of its customers, and loses 10% to grocery A and
15% to grocery B.

(a) Construct the transition matrix for the Markov chain that describes
the change in the market share.

(b) Currently the market share is 0.4 for grocery A, 0.3 for grocery B
and 0.3 for grocery C. What share of the market is held by each
grocery after 1 year?

(c) Assuming the trend continues, what share does each grocery hold
after 2 years?

. TG Polling conducted a poll 6 months before elections in a country in

which a liberal and a conservative were running for president. TG found
that 60% of the voters intended to vote for the conservative and 40% for
the liberal. In a poll conducted 3 months later, TG found that 70% of those
who had earlier stated a preference for the conservative candidate still
maintained that preference, whereas 30% of those voters now preferred
the liberal candidate. Of those who earlier preferred the liberal, 80% still
maintained their preference, whereas 20% switched to the conservative.

(a) If elections were held at this time (after 3 months), who would win?

(b) If the trend continues, which candidate will win the election?

. Three truck manufacturers A, B, and C share the domestic market in

a certain country. Their current market shares are 60%, 30% and 10%
respectively. Market studies show that manufacturer A retains 75% of its
customers, and loses 15% to manufacturer B and 10% to manufacturer C.
Of the customers who buy from manufacturer B, 90% would keep

their preference, while 5% go to each of manufacturers A and C. Of the
customers who buy from manufacturer C, 85% are retained, while 5%
would buy from manufacturer A and 10% from manufacturer B.

(a) Assuming that these sentiments reflect the buying habits of
customers in the future, determine the market share that will be
held by each manufacturer after 2 years.

{(b) Under the same conditions, determine the market share that will be
held by each manufacturer after 5 years.

- By reviewing its donation records, the alumni office of a university finds

that 80% of its alumni who contribute to the annual fund one year will

- also contribute the next year, and 30% of those who do not contribute

One year will contribute the next. Consider a new graduate who did not
g1ve a donation in the initial year after graduation.
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iangle: (1, 0), (3, 1),
(a) Construct the probable future donation record for three years of Greefl triangle: (1, 0), (3, 1), and (1, 3)

such new graduates who did not give a donation in the initial year
after graduation.

Red triangle: (—1,0), (=3, 1), and (=1, 3)

That means, any point with coordinates (x, y) is reflected into a point (—x, y).
(b) Consider the situation on the 11th year and conjecture a pattern for - P (—=x, )

| the long term. This process can be achieved by matrix multiplication. Consider the matrix

-1 0
M = ( 0 1) and construct a matrix, T with the coordinates of the vertices of
8. A car rental agency has three rental locations, Zurich (Z), Geneva (G),

I and Basel (B). A customer may rent a car from any of the three locations the green triangle as its columns T = (1 3 1)
|

and return the car to any of the three locations. The manager finds that 0 13
| customers return the cars to the various locations according to the

following probabilities: Now multiply M by T: MT = (-1 0><1 3 1) - (—1 -3 —1)
i

0 1/\0 1 3 0
Rented from location L E
J yA G B

| 08 03 0.2) 7 Returned
1 0.1 02 06| G to
: 01 05 02/ B location

The columns of the resulting matrix are the coordinates of the red triangle.

‘The method we can use to find the matrix representing a transformation is
given by the following theorem.

Previous records show that 40% of the fleet are rented in Geneva, Matrix Basis Theorem

35% in Zurich, and 25% in Basel. Find the long-term trend in terms of
percentage of cars present at each location.

Let T'be a lransformation represented by a matrix M. Then if

1 : o
T: ( ) = ({l),and il <U> => /b>,t]]enM = ((l b
U ¢ 1 \d c d

Here is a list of major transformations that you are familiar with and their
corresponding matrices.

1. Reflection in the x-axis: <1> — <1>, <0> — ( O) =M= (1 0
0 0/ \1 -1 0 —1

Reflection in the y-axis: (1> — <-1>, <0> — (O) =M= el
0 0/ \1 1 0 1

| <
oy = () () () )= )
|

) Reﬂectioniny=—x: (1)|—>< 0>,<0>|—><_1>=>M= 0~
0 -1 1 0 -1 0

- Horizontal dilation by a constant k (stretch/shrink):

)= (0 (== )

For example, triangle (1, 1), (2, 2), (1, 4) will be transformed into

b 62 =0T

9. 200000 people live in a certain city and 25000 people live in its suburbs.

The Regional Planning Commission determines that each year 5%

of the city population moves to the suburbs and 3% of the suburban

population moves to the city.

(a) Assuming that the total population remains constant, make a table
that shows the populations of the city and its suburbs over a five-
year period (round to the nearest integer).

(a) Over the long term, how will the population be distributed between
the city and its suburbs?

Matrices and geomefric
transformations

| ! In Chapter 3 you learned about function transformations: Reflecting in the

x-axis, or y-axis, stretching vertically or horizontally, or in both directions of
combinations of those. In this chapter we focus on transformations of the plané:

The green triangle in the diagram in Figure 7.17, for example, is reflected in
the y-axis to get the red triangle. As the diagram shows, only the position has

Figure 7.17 'lhe green changed. All angles and sides still have the same measures.
(riangle is reflected in the j ) ) |
y-axis to get the red triangle Take a look at the coordinates of the points making the triangles:

o
/..) EJ Lo

onine JERE
Explore matrix transformations
visually.

A
(1,4) (k,4)

(2k,2)
(1, 1) (k1)

-
+

Figure 7.18 Horizonlal dilation

253



|
a

Matrix algebra

6. Vertical dilation by a constant (stretch/shrink):

(===l )

For example, triangle (1, 1), (2,2), (1, 4) will be transformed into

(1 0)(1 2 1>*<1 2 1)
0o m/\1 2 4 m 2m 4m

m
and a vertical dilation of magnitude

7. The matrix M = <k
0

For example, triangle (1, 1), (2,2), (1,4) will be transformed into

(k 0)(1 2 1)_(k 2k k>
0 m/\1 2 4 m 2m 4m

Example 7.28
The triangle ABC has vertices A(2, —3), B(3, 1), and C(—1,4).

(a) Find the area of ABC.

(b) Find the coordinates of the image of ABC under each of the following

transformations:
(i) reflection in the x-axis

(ii) reflection in the liney = x

(c) Find the coordinates of the image of ABC under each of the following
find the area of the image, find the determinant of the

transformations,
transformation matrix, and make a conjecture about the relationship

between the three quantities.
(i) dilation of magnitude 2 in the horizontal direction
(ii) horizontal dilation of magnitude k and vertical dilation of

magnitude m.

Solution

(a) Prom section 7.2, the area is given by

D5 A

0
) represents a horizontal dilation of magnitude k

m. When k = m, this is called scalingl',

(b) () Reflection in the x-axis: (1
0

0 2 3 -1
—1)(-3 1 4)
- (2 3 —1
e
that is (2, 3), (3, —1), (—1, —4)
1>( 2 3 -1
0/\-3 1 4)

:(—3 1 4
2 3 —1>

thatis (—3, 2), (1, 3), (4, —1)

(i) Reflection in the line y = x: (0
1

: (c) (i) Dilation of magnitude 2 in the horizontal direction:
(2 O) ( 2 3 - 1> 4 6 —2
o 1/\-3 1 4/ <—3 1 4)

So, image has the vertices (4, —3), (6, 1), (—2, 4)

. 4 =3 1
area = 2 6 1 1/| = 19 and determinant is 2 OI =)
=5 | !

Thus, area of image = determinant X Area of pre-image. In fact, it must
be the absolute value of the determinant.

(if) Dilations in both directions:
(k 0)( 2 3 —1)_( 2k 3k —k
0 m/\=3 1 4 —3m m 4m>
So, image has the vertices

(2k, —3m), (3k, m), (—k, 4m),

2k —3Im 1
1
area =3k m 1 =L2"1|km|
-k 4m 1

Thus, area of image = |determinant| X Area of object (pre-image)

:iz)ove tr‘ansformations are called affine transformations. Affine
pp:;?ri?;ts are knqwn to preserve points, (for example, a triangle is
B tl.rlanfgle)_, al'so, sets of parallel lines and planes remain parallel
. I::ns ormafton. An fnfﬁne transformation does not necessarily
E.. g es etv’/veen lines or distances between points, though it does

Ve ratios of distances between points lying on a straight line.

=~

Ifa malrix M is a
transformation matrix,
then Area of image =
|det M| x area of object.
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Two more transformations worth mentioning, but may not be examined withoul guidance are
lorizontal and vertical shearing:

. 1k\xy  [xtky .
A horizonlal shearing of magnitude k is given by i (}/) -::K and a vertical shearing
4 y

] o L0V xy &
ol magnilude n11s given y<m 1)(})* y 4

As the figure implies, we have a rotation through an angle of 30°. This is
3

confirmed by observing that the image of (1) s it oo (cos 30°>
0 sin 30°

1
2

horizontal shear A
t ) o Etky) (o1, 521)
==
"
1 V3
555 ol
.ﬁ([é l)
| 272

0 wo
:I .l
Two more transformations, that are a special type of affine transformation, are 1 ___,,fg_ 1 |
called isometries: translations and rotations. These transformations preserve (b) A% = 2 e e G Tt 1 ; 2 cos 60° '
angles and distances. That is, in a translation, a triangle is mapped into a V3 1 & 0 4 731 \sineo :
2 2 oh |
i

congruent triangle. Similarly, for rotations.
which in turn implies a rotation of 60°.

Example 7.29 0 -1
3 — : g . o
B A (1 0> implying a rotation of 90°. !
) . 2 2
Consider the matrix A = . | . . |
{3 We can generalise the above discussion for rotations around the origin through
2 2 any angle. ‘
and the unit square with vertices (0, 0), (1,0), (1, 1), and (0, 1). As the diagram shows, the rotation maps <1> . (cos 9) and (0) o ( —sin 6
0/ \sing 1 cos 6/

(a) Perform the transformation, sketch graphs showing the unit square and thus we can state the following result:
|

its image, and conjecture what this transformation represents.

cos —sinf

The mawrix ( ) represents a rotation of angle @ around the origin.

(b) What do A? and A? represent?

sin 6 cos )

A

/\ |

Solution

(a) The transformation mapped

‘ 0 E 3i-1 _1 (—sind, cos§) g=---- 0,1)
: (0 11 0> 2 2 2 ! i
to i | :
001 1 |5 1 V3+1 V3 cosdl | (cost, sinf)
2 2 2 | 0 gt |
| sind | |
. |

r

—sing 0 cosd (1,0
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. Exarnple 7.30
Consider the unit square in Example 7.29. Perform the following two
rotations on the square and draw a sketch of the result:

(a) rotation of 60° around the origin

(b) rotation of 180° around the origin.

Solution
0

1 cos 60° —sin60°>
0 0

sin 60° cos 60°

0
(a) We multiply ( 1) by matrix (

: !'- —_3. 0 1 1 -3 ___3_
I == 7 = to get 2 2 2
E l i 0 ﬁ V3 + 1 l
l 2 2 2 2 2
4\
0, 1) S
| 5]
| Vi )
31
| (-53)
H 0 w0
(b) We multiply by A
]
| (cos 180° —sin 180")
sin 180° cos 180° 0, 1) (1,1
(—1 0> o oef
= 0 ge
0 —1 5
| (—1,0) R
| (() -1 -1 0) i =%
0 0 -1 —1 l
| |
! }
| (=1, =) ————0. - D)
- /(=1 0 o
The matrix < >
0 -1
represents a reflection in T E nothing o refeot i the Origin.

the origin.

268

Translation

Ry x+h h
mapping (y) into e This is called a translation of < )
k

As is, we cannot perform translation using matrix multiplication. However, we
3

areaof a triangle. We introduce a ‘new’ set of 3D coordinates (x, y, 1), called
homogeneous coordinates to represent the 2D coordinates (x, y). Translations
can then be performed with matrix multiplication in the following manner.

/1 0 Hh\/[fx x+ K
0 1 k|ly|=|yt+k
o 0 1/\1 1

Rotation in this system can also be performed by considering the rotation
‘matrix as
cos® —sinf 0
sinff cosf 0
0 0 1

In fact, all matrices introduced earlier can be written in this manner:

a b 0
c d 0
0o 0

l€dmposition of transformations

Let S and T be two transformations. The transformation S o T is called the

composition of the two transformatior i i
I ations where T'is applied first. It i
written as S(T(x, y)) . e

For example, if $(x, y) = (—x, ¥) and T(x, y) = (—y x), then:
S T(x, y) = S(T(x, y)) = S(—y, %) = (3, %)
and ToSp,y)=T(—xy) =(—y — %

Compogiti .
Position of transformations can be achieved with matrix multiplication.

(B 11 i i
i) 4 e ti]e malll).(lepresenlatmn of a transformation M, and N is that of transformation N, then
= product MN is the matrix representation of M o N ‘

A translation of i units horizontally and k units vertically is simply achieved by

can follow a procedure similar to what we did in using determinants to find the

Composition of
transformations is nol
commutative, Thal is, in
general Mo Nz Ne M
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Example 7.31 example 7.32

nescribe the effect of each transformation on any point (x, y) in the plane
andona circle with equation x2 + y2 = 16

bLY o) |
|

[
Gotution i

Consider the unit square in Example 7.29. Perform the following
transformations on the square.

) 2
(a) a translation of (3)

2
(b) a translation of <3> followed by a rotation of 180°

_ 2 ) This is a simple dilation (scale in this case).
(c) a rotation of 180° followed by a translation of (3) 2 5 0) ( x) [ ) 24 |
' (0 2)\¥) \2y ‘
. Solution The new coordinates are / \
|
| 01 1 0 0+2 1+2 1+2 0+2 273 %3 - i | 9
I (a) = = > X1 2X X 2 x
0/=0x 14§ L 0+3 0+3 1+3 1+3 3 3 4 4/ - :b):
V1 2y N i
1 0 20 1 1 0 (23 3 2 2 |
It canbe doneby{0o 1 3]0 0 1 1}={3 3 4 4 ~ so, the equation of the image is |
0o 0 V1 1 1 1/ N9l . '
— |

2 2
N
> ) + (7) =16 = x,° + y,2 = 64, which is another

| circle with a larger radius (which you can write as x2 + y? = 64). Note
. . I
 that the new circle has an area 4 times the original. The determinant of
1 the matrix is 4.
|

2ty =16

(b) Translation is done as above. Applying rotation to the result

<—1 0)(2 3 3 2)_(-2 -3 =3 —2)
0 —1/\3 3 4 4 -3 -3 -4 —4

|
This cah be done by the following matrix multiplication 3 0\/x Do
1 0 0N/l 0 24/0 1 1 0 /(=2 -3 —3 -2 . (0 1)(}/): (y)
o —1 ojlo 1 3f{o 0 1 1}={-3 -3 —4 _4'1} ' The new coordinates are
0 o V0w o0 1\ 1 1 1 1 1 1

=Y

o _ (3w w2 /TV
)= ()-0-3 Sy

~ so the equation of the image is

L ¥

= =1 0N/O 110 0 =1in=] 0 A
(c) Rotation: ( ) ( ) = ( ) applying
0 —1/\0 0 1 1 0 0 -1 —1 1

. 0+2 —-14+2 —1+2 0-+2
translation to the result
0+3 0+3 =~1+3 —~1-+3

2 1 1 2
B <3 3 2 2)
This can be done by the following matrix multiplication
I 1 0 2\/-1 0 0N/ 1 1 0

291
01 3 o -1 ojfo o 1 1)=|3 3
' 0 1 0 0 11 1 1 1 11

il X 2
B+ y? = 16$(?1) + %2 = 16

|
| x2 2 X2 2
s (or i + e 1) which is an ellipse.

b) This is a dilation in the x-direction. IA
144 ' 16

Example 7.33

X
Cons;
2 T(lislder each transformation matrix.
In : . a
an eigenvector and interpret its meaning. '

ity o0 ‘

261

[l \® I
— NN

Note in Example 7.31 that a translation followed by a rotation is not the same
as a rotation followed by a translation.
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Solution

(a) From section 7.4, you know that the characteristic equation is
(L — 3)(A — 5) = 0 implying that the eigenvalues are 3 and 5 with

k 0
corresponding eigenvectors ( 1) and (k ) This means that
0 2

vectors along the x-axis and along the y-axis will have their images

. . 3 0\/k 3k, ky
multiples of themselves. i.e., = =3 and
0 5/\0 0 0

Y

Figure 7.19 Diagram for
solution to Example 7.33 (a)

| % 3 0\/(0 0 0
( ) = = 5{ . Note from the graph that an .
| N 0 5/\k 5k, k,
) Image of b 1 0 §
| eigenvector ( ) has been multiplied by 3 and ( > by 5.
> (1 "
2 (b) We can show thata = (2> is an eigenvector corresponding to an .
5 1
) _wb N eigenvalue of 3. This means that only vectors parallel to (2) are
3 !
transformed into multiples of themselves. See the diagram where we

Figure 7.20 Diagram for

solution fo Example 7.33 (b) show another vector with its image.

— y el o) &
! e =t <4
'l - KRR R

Practal mathematics is a growing field of study. Fractals are applied in today’s
art, media, communications industry, and science. )

Creating a fractal involves a series of affine transformations of the form

T((x)) - (a b) (x> + (e)) where a, b, ¢, d, e and fare scalars.
y ¢ d/\V f

To make a fractal using such transformations, we begin with an initial

self-similar set. Each point in the set is transformed as dictated by the

transformation equation. Since the only operations present in transformation

and translations, one can visually arrive at the

equation are rotations, scalings,
than one point at a time.

transformation by operating on the whole set rather
Below is one of the most famous fractals, the Sierpinski carpet.

The 8 transformation equations used to generate this image are:
2 0

S R R C N

0

| —

w
~
w
N
e
AR
-~
S
il
W
—_——
2
——”
B
B R
w2
—_—
1=
~
-
—
:z:— =
——
——
Il
=] | =
—
b
—_———
+

RO

ST 8 I A o
000 oG o ()

Start with the unit square, call it Uy, then apply the transformation equations
to the square, you will get U,. Notice how square 1 is the result of applying T
with no translation, T, has a translation of 1:3 in the horizontal direction gang
s0 on. The square in the middle marked with white will be removed. Nex‘)c, for

‘each new image, apply the equations again, and we get U,, the squares left in

the centre of each square will be removed, and so on. Eventually, with many

iterations, obviously done with software, it is possible to get something similar

to U, and more!

_)" y

X U2
!'-}w re
‘slire 7,21 Sierpinskj carpet
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Example 7.34

(b) For the second iteration, we apply the same procedure on each segment |
created in the first iteration: '

e
oF }
o

The Koch curve is constructed by b
removing the middle third of a line

| segment (say length 1 unit) and replacing

it with two sides of an equilateral triangle.
Here is the first iteration.

The Koch curve can be created with A B C >

four transformations: For the third iteration, we apply the same procedure on each segment

_ —— _ created in the second iteration:
1. The first shrinks the whole segment to one third of its original size.

'This maps AD to AB.

2. The second is a dilation of ratio 1:3 followed by a rotation of 60° and a
horizontal translation of 1:3. This maps AD to BE.

i 3. The third transformation is a dilation of ratio 1:3 followed by a rotation of
(13) -5}

2 6

260° and a translation of % in the horizontal direction and%

in the vertical direction. This maps AD to EC. Exercise 7.5

1. Find the image of AABC with vertices A (0, 0), B (3, 0), and C (3, 1)
under each of the following transformations, then describe the effect of
the transformation in words. i

' 4. The fourth transformation is a dilation of ratio 1:3 followed by a
' translation of 2:3 in the horizontal direction. This maps AD to CD.

‘ (a) Find the matrices representing each transformation.
|
(b) Draw the first three iterations. (@) T(x y) = <—1 0) (b) T(x, y) = (2 0) :|
‘ ) 0 1 0 2 I'
Solution i ) '
(©) T(x,y) = ( ) (d) T(x, y) = 0 1 '
| L g 0 -1 10
i @ 1 3 (x) 3 (0) 1 0 0 1
a) 1. (e) T(x, y) = ( > f = v
3
|
>0 oy Bl 1 2. Describe th : ot 0 2 ',
c0s60  —sin60\(3 ¥ i & 73 % L% 1 - Describe the effect of applying the transformation ( ) on objects in
(y) +13]= ( ) +13  the plane. 2.0
sin 60 cos60/{, LI\ V3 1|V |
= 0, v i 0 |
3 6 6 _‘ . |
| 3. Determine whether the matrix A below may represent a rotation about |
| 18 L - 3ol |
(—60) —sin(—60 x 2 0 L 2 2
(COS S )> d (y) - = 6 E ( ) + 1 the origin. Explain your answer: A = % 2 i
| sin(—60)  cos(—60) /{1 V3 3 o1V E]
— [ — — —_—— Al |
3 6 6 212 !
|

+ Describe the effect upon the line with equation 3x + 2y = 6 of the
transformation: |

¥ o) '

S
03] =
=
::d =
—
+
—_—
W
St

| —
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12. Consider a Koch curve as described in Example 7.34, where the length I‘
of each side is 1 unit. I‘

5. Show that a reflection in the x-axis followed by a reflection in the y-axis
is equivalent to a rotation of 180° about the origin.

6. Describe the effect of the transformation with the given matrix on the (a) Find an expression for the length of the nth iterated curve ‘ |

graph of the given equation:

0
(a) ( 2>;x2 +y—12=9

) number of times.
0

If instead of starting with a line, you start with an equilateral triangle,

(b) Hence, find the length of the curve as it is iterated an infinite |
you get a Koch snowflake. l

2 0
(b)( );3x+2y=6
0 -1

7. Show that:
(a) a reflection in the x-axis followed by a reflection in the line y = xis
equivalent to a rotation about the origin through 90°

(b) a reflection in the line y = x followed by a reflection in the x-axis is
equivalent to a rotation about the origin through —90°

8. Consider the unit square with vertices (0,0), (1, 0), (1, 1), and (0, 1).

| Find the image of this square under the foll(l)wing transformations and’
h sketch the graphs of the final images:

2 2 0
| (a) atranslation of (3) followed by a dilation (O 3)

| 2 0 2
‘ (b) a djlation (0 3> followed by a translation (3)

1 0
9. Consider the transformation ( > and the line 3x +y =6
3 1 (¢) Find an expression for the number of small sides after  iterations.

: Find the equation of the image of the line under the transformation.
Then choose three points on the line and find their images and check

the correctness of your equation.

(d) Find the length of each side after  iterations.

(e) Find the perimeter after # iterations, and hence the perimeter of the

] : . . . X fr
' 10. Consider each of the transformation matrices, find the eigenvectors for el

each and interpret them in terms of transformations.
1100 0 1 122 2 2

Wl ) e, () of
0 -1 1 0 % 6 3

11. A rotation about the origin of o followed by a rotation of 5°
' is equivalent to a rotation of a® + f°
(a) Write down the matrix for a rotation of o + 8°

(b) By considering rotation of &’ followed by a rotation of 3° as
a composition of transformations, find the matrix for this

(f) Find the number of smaller triangles (each missing one side).

(g) Find the area of each triangle.

(h) Find the total area of the triangles after » iterations, and hence the |
area of the fractal. |

transformation.

(c) Compare your answers to (a) and (b).

N
()
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7 Matrix algebra

Chapter 7 practice questions (b) Hence solve the system of simultaneous equations

3 — —
1. IfA = ( )and det A = 14, find the value of x. K=y ha Sl ' |
—4x x 2x+2y—2=2 ||
2 1 — 5y = |
2. LetM:<a )whereaEZ Xx=5y+3z=3 !
7 =1 1
|

I (a) Find M?in terms of a.

—2 4

8;LetC=< )andD=< > 2) '

=7 —1 a |
l
|

5 —4
(b) M?> = ( ) find the value of a. , =
B 5 The matrix Q is given such that 3Q = 2C — D '
(c) Using this value of a, find M~! and hence solve the system of (a) Find Q |
a1 | |
COpROn: (b) Find CD i
—x+2y=-3 i l
2k =g (c) Find D! i

|
: . . 5 2 ] L 2
3. Two matrices are given, where A = ( and BA = ( ‘ a —4 -6 I
2 0/ 44 8 9. (a) Find the values of a and b given that the matrix A = | -8 5 7
Find B.
=5 &) =) |
, P28 -2
4. The matrices A, B, and X are: is the inverse of the matrix B=| 3 1 l
1 1 =3

1 4598 b
AZ( 3 )B:( )andX—‘:(a )witha,b,C,dE(D
-5 6 0 -3 ¢ d

Find the values of g, b, ¢ and d such that AX + X = B

- (b) For the values of a and b found in part (a), solve the system of linear
equations:

X+2y—2z=5

5 =2
5.A=<_ 1)isa2><2matrix. 3x+by+z=0
7

| (a) Write out A™’ —x+y—3z=a-—-1
10. (a) Given matrices A, B, C for which AB = Cand det 4 = 0,

(b) (i) If XA + B = C, where B, C, and X are 2 X 2 matrices,
express B in terms of A and C.

express X in terms of A~!, B,and C.

6 7 -5 0 ! I
' (ii) Find X when B = ( ) and C = ( = ) 1 2 3 4 13 7 5 |
| 5 2 =837 (b) LetA={2 —1 2|D=|-2 7 —4landC=|7 |

_{a b ' g 2
6. LetA = i and B = - (i) Find the matrix DA

(a) Find A + B
(b) Find AB
' _ 1 =3 1
il 7. (a) State the inverse of the matrix A =12 2 -1
1 =5 3

(i1) Find B when AB = C

(c) The following three equations represent three planes that intersect at
a point. Find the coordinates of this point. |

X+2y+3z2=52x—y+2z=7and 3x — 3y + 2z =10 1
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UL ) 15. A country is divided into three demographic regions. It is found that .
11. (a) Find the determinant of the matrix {1 2 1 each year 5% o.f the re-sidents of region 1 move to region 2, and 5% move ] | i
5 15 to region 3. Of the residents of region 2, 15% move to region 1 and 10% -

move to region 3. And of the residents of region 3, 10% move to region 1

(b) TFind the value of A for which the following system of equations can and 5% move to region 2. What percentage of the population resides in

" be solved. each of the three regions after a long period of time? |
1 1 2\/[x 3 i : )

| 16. Two competing television channels, channel 1 and channel 2, each |
12 1|y =14 have 50% of the viewer market at some initial point in time. Over each
2 1 5/\z) \A '

one-year period, channel 1 captures 10% of channel 2’s share, and

i channel 2 captures 20% of channel 1’s share.
(c) For this value of A, find the general solution to the system of

Gons (a) What is each channel’s market share after one year?
equations. #

(b) Track the market shares of channels 1 and 2 in part (a) over a
five-year period.

_ AL s)
12. Find the eigenvalues and eigenvectors of the matrix A = (5 N 1)

(c) If this trend continues, what is the market share of each station? ‘
. . . II

17. Sierpinski’ s triangle is another fractal that can be constructed |
using transformations, starting with an equilateral triangle. Three '
transformations are required. The first three stages are shown. ' "‘

13. Ata large private university, the student loan program evaluates the:
payment status of student loans. The loans are divided into thre-e
categories: loans paid within 14 days are up to date, D, loans paid
within 15-60 days are considered late, L, and those paid after 60 days

' are labelled as problematic, P. Each year, some of the students change
categories because they get behind in payments or catch up. The table _
shows the fraction of students that change from one category to another
or stay in the same category.

At stage 1, we take a scale of ratio —;— and create one triangle,

which is positioned at the lower left corner of the original. Next, we '
create another triangle and translate it to fit the lower right corner,

and similarly we fill the upper corner, thus cutting out the middle I
triangle as shown. The process is then repeated to each new shaded [
triangle, and so on.

|

| Move from category '8

D L P I'

| D 086 |062 [017 — % .
Moveto |1~ 103 [029 [0.37

| category L |

‘ P 0.06 0.09 0.46 III

One year, the fraction of students in each category was 0.8 in D, () Count the number of shaded triangles at each stage (stage 0 has 1, "

0.11inL,and 0.09in P. stage 1 has 3). Predict the number of shaded triangles at stage 4 | '1

(a) Find the fraction in each category the next year. and stage 5.

(b) Find the fraction in each category three years later. (b) What is the number of triangles at stage n?

(c) Letting the area at stage 0 to be a, what is the total shaded area at

each stage? As # becomes large without bound, what happens to the

1 0
14. (a) Diagonalise the matrix A = (6 > shaded area? i

— 1,

(b) Hence or otherwise find A® ) Find the matrix transformations required to create the fractal.

IA) |
ol
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Matrix algebra

18. A study in 2015 divided occupations in the United Kingdom into upper
level, U, (executives and professionals), middle level, M, (supervisors
and skilled manual workers), and lower level, L, (unskilled).

To determine the mobility across these levels in a generation, about two
thousand men were asked, ‘At which level are you, and at which level
was your father when you were fourteen years old?” Here is a summary:

Father’s occupation
U M L
0.60 0.26 0.14 U
Somont 029 | 037 | 034 | M
occupation
0.16 0.27 0.57 L

For example, a child of a middle-class worker has a 0.26 chance of
moving into an upper class job.

With initial distribution of respondents’ fathers given below, find the
distributions for the next five generations.

Upper: 0.12, middle: 0.32, lower: 0.56
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